These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 447929)

  • 41. Airborne and surface residues of parathion and its conversion products in a treated plum orchard environment.
    Woodrow JE; Seiber JN; Crosby DG; Moilanen KW; Soderquist CJ; Mourer C
    Arch Environ Contam Toxicol; 1977; 6(2-3):175-91. PubMed ID: 901000
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pesticide applicator exposure to insecticides during treatment of citrus trees with oscillating boom and airblast units.
    Carman GE; Iwata Y; Pappas JL; O'Neal JR; Gunther FA
    Arch Environ Contam Toxicol; 1982 Nov; 11(6):651-9. PubMed ID: 7165384
    [No Abstract]   [Full Text] [Related]  

  • 43. Establishing dislodgeable pesticide residues on leaf surfaces.
    Gunther FA; Westlake WE; Barkley JH; Winterlin W; Langbehn L
    Bull Environ Contam Toxicol; 1973 Apr; 9(4):243-9. PubMed ID: 4780728
    [No Abstract]   [Full Text] [Related]  

  • 44. Worker reentry research for carbosulfan applied to California citrus trees.
    Iwata Y; Knaak JB; Düsch ME; O'Neal JR; Pappas JL
    J Agric Food Chem; 1983; 31(6):1131-6. PubMed ID: 6655137
    [No Abstract]   [Full Text] [Related]  

  • 45. Parathion degradation in submerged rice soils in the Philippines.
    Sethunathan N; Yoshida T
    J Agric Food Chem; 1973; 21(3):504-6. PubMed ID: 4708819
    [No Abstract]   [Full Text] [Related]  

  • 46. Worker environment research: methidathion applied to orange trees.
    Iwata Y; Carman GE; Gunther FA
    J Agric Food Chem; 1979; 27(1):119-29. PubMed ID: 762318
    [No Abstract]   [Full Text] [Related]  

  • 47. Gas-liquid chromatographic determination of bromacil residues.
    Ting KC; Root GA; Tichelaar GR
    J Assoc Off Anal Chem; 1980 Jan; 63(1):43-6. PubMed ID: 7380790
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Volatilization of plant protective agents from plants and soil as potential sources of exposure].
    Goedicke HJ
    Z Gesamte Hyg; 1989 Mar; 35(3):146-8. PubMed ID: 2728544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modelling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part I. Model description and evaluation.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2006 Sep; 368(2-3):823-38. PubMed ID: 16678241
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dissipation of methyl parathion and ethyl parathion from cotton foliage as affected by formulation.
    Smith S; Willis GH; McDowell LL; Southwick LM
    Bull Environ Contam Toxicol; 1987 Aug; 39(2):280-5. PubMed ID: 3663982
    [No Abstract]   [Full Text] [Related]  

  • 51. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Determination of the active substance of the preparation Roundup and its metabolite in environmental objects].
    Buniatian IuA; Gevorgian AA
    Gig Sanit; 1984 May; (5):43-4. PubMed ID: 6468950
    [No Abstract]   [Full Text] [Related]  

  • 53. Dissipation of parathion and paraoxon on citrus foliage dust and dry soil surfaces in a treated orchard.
    Winterlin W; Hall G; Mourer C; Walker G
    Arch Environ Contam Toxicol; 1982; 11(1):111-21. PubMed ID: 7073313
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of remedial treatment on phosphorus availability in an arsenical pesticide contaminated soil.
    Sarkar D; Makris KC; Datta R; Khairom A
    Bull Environ Contam Toxicol; 2006 Aug; 77(2):297-304. PubMed ID: 16977533
    [No Abstract]   [Full Text] [Related]  

  • 55. Persistence of parathion and its oxidation to paraoxon on the soil surface as related to worker reentry into treated crops.
    Spencer WF; Cliath MM; Davis KR
    Bull Environ Contam Toxicol; 1975 Sep; 14(3):265-72. PubMed ID: 1174737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of ferrous sulfate on parathion degradation in flooded soil.
    Rao YR; Sethunathan N
    J Environ Sci Health B; 1979; 14(3):335-51. PubMed ID: 438468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Volatilization of dieldrin and heptachlor from a maize field.
    Taylor AW; Glotfelty DE; Glass BL; Freeman HP; Edwards WM
    J Agric Food Chem; 1976; 24(3):625-31. PubMed ID: 944731
    [No Abstract]   [Full Text] [Related]  

  • 58. Extraction efficiency determinations of labeled systemic parathion residues.
    White ER; al-Adil KM; Winterlin WL; Kilgore WW
    Bull Environ Contam Toxicol; 1973 Sep; 10(3):140-4. PubMed ID: 4753265
    [No Abstract]   [Full Text] [Related]  

  • 59. Residues of parathion and conversion products on apple and peach foliage resulting from repeated spray applications.
    Staiff DC; Comer SW; Foster RJ
    Bull Environ Contam Toxicol; 1975 Aug; 14(2):135-9. PubMed ID: 1174721
    [No Abstract]   [Full Text] [Related]  

  • 60. Fate of parathion in ground water in commercial cranberry culture in the New Jersey pinelands.
    Winnett G; Marucci P; Reduker S; Uchrin CG
    Bull Environ Contam Toxicol; 1990 Sep; 45(3):382-8. PubMed ID: 2257333
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.