These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 448086)

  • 1. Studies on the terminal stages of immune hemolysis. IV. Effect of metal salts.
    Boyle MD; Langone JJ; Borsos T
    J Immunol; 1979 Apr; 122(4):1209-13. PubMed ID: 448086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the terminal stages of immune hemolysis. III. Distinction between the insertion of C9 and the formation of a transmembrane channel.
    Boyle MD; Langone JJ; Borsos T
    J Immunol; 1978 May; 120(5):1721-25. PubMed ID: 659873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of complement-induced cell lysis. Demonstration of a three-step mechanism of EAC1-8 cell lysis by C9 and of a non-osmotic swelling of erythrocytes.
    Valet G; Opferkuch W
    J Immunol; 1975 Oct; 115(4):1028-33. PubMed ID: 809505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the terminal stages of immune hemolysis. VI. Osmotic blockers of differing Stokes' radii detect complement-induced transmembrane channels of differing size.
    Boyle MD; Gee AP; Borsos T
    J Immunol; 1979 Jul; 123(1):77-82. PubMed ID: 109541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinction between C8-mediated and C8/C9-mediated hemolysis on the basis of independent 86Rb and hemoglobin release.
    Gee AP; Boyle MD; Borsos T
    J Immunol; 1980 Apr; 124(4):1905-10. PubMed ID: 7365242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the terminal stages of immune hemolysis. V. Evidence that not all complement-produced transmembrane channels are equal.
    Boyle MD; Borsos T
    J Immunol; 1979 Jul; 123(1):71-6. PubMed ID: 109540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anticomplementary agent, K-76 monocarboxylic acid: its site and mechanism of inhibition of the complement activation cascade.
    Hong K; Kinoshita T; Miyazaki W; Izawa T; Inoue K
    J Immunol; 1979 Jun; 122(6):2418-23. PubMed ID: 448130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fluidity change in erythrocytes induced by complement system.
    Nakamura M; Ohnishi S; Kitamura H; Inai S
    Biochemistry; 1976 Nov; 15(22):4838-43. PubMed ID: 186096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional size of the primary complement lesion in resealed erythrocyte membrane ghosts.
    Giavedoni EB; Chow YM; Dalmasso AP
    J Immunol; 1979 Jan; 122(1):240-5. PubMed ID: 570203
    [No Abstract]   [Full Text] [Related]  

  • 10. Inhibition of the terminal stage of complement-mediated lysis (reactive lysis) by zinc and copper ions.
    Yamamoto K; Takahashi M
    Int Arch Allergy Appl Immunol; 1975; 48(5):653-63. PubMed ID: 1169223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the C9b domain in the binding of C9 molecules to EAC1-8 defined by monoclonal antibodies to C9.
    Yoden A; Moriyama T; Inoue K; Inai S
    J Immunol; 1988 Apr; 140(7):2317-21. PubMed ID: 3351301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modulation of classical pathway activation: C2 and C3 convertase formation and regulation on sheep, guinea pig, and human erythrocytes.
    Brown EJ; Ramsey J; Hammer CH; Frank MM
    J Immunol; 1983 Jul; 131(1):403-8. PubMed ID: 6602833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C5b-9 assembly: average binding of one C9 molecule to C5b-8 without poly-C9 formation generates a stable transmembrane pore.
    Bhakdi S; Tranum-Jensen J
    J Immunol; 1986 Apr; 136(8):2999-3005. PubMed ID: 3958488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terminal step of immune hemolysis. I. Inhibition of E transformation by uranyl ion.
    Miyama A; Kogami J; Yamada S; Kashiba S
    Biken J; 1968 Jun; 11(2):101-10. PubMed ID: 4972830
    [No Abstract]   [Full Text] [Related]  

  • 15. Species-restricted target cell lysis by human complement: complement-lysed erythrocytes from heterologous and homologous species differ in their ratio of bound to inserted C9.
    Hu VW; Shin ML
    J Immunol; 1984 Oct; 133(4):2133-7. PubMed ID: 6470486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative toxicity of metal salts to immune hemolysis in a mixture of antibody-secreting spleen cells, sheep red blood cells and complement.
    Seko Y; Koyama T; Ichiki A; Sugamata M; Miura T
    Res Commun Chem Pathol Pharmacol; 1982 May; 36(2):205-13. PubMed ID: 6213005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the number of lytic sites in biconcave and spheroid erythrocyte ghosts after complement lysis.
    Bauer J; Podack ER; Valet G
    J Immunol; 1979 May; 122(5):2032-6. PubMed ID: 448115
    [No Abstract]   [Full Text] [Related]  

  • 18. C3-independent immune haemolysis: mechanism of membrane attack complex formation.
    Kitamura H; Tsuboi M; Nagaki K
    Immunology; 1986 Sep; 59(1):147-51. PubMed ID: 3759127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the terminal stages of antibody-complement mediated killing of a tumor cell. III. Effect of membrane active agents.
    Boyle MD; Ohanian SH; Borsos T
    J Immunol; 1976 Jul; 117(1):106-9. PubMed ID: 932422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the gorwth of Thiobacillus ferrooxidans. 3. Influence of uranium, other metal ions and 2:4-dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions.
    Tuovinen OH; Kelly DP
    Arch Mikrobiol; 1974 Feb; 95(2):165-80. PubMed ID: 4815912
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.