These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 448327)
1. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites. Grinstein S; McCulloch L; Rothstein A J Gen Physiol; 1979 Apr; 73(4):493-514. PubMed ID: 448327 [TBL] [Abstract][Full Text] [Related]
2. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell. Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926 [TBL] [Abstract][Full Text] [Related]
3. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane. Knauf PA; Ship S; Breuer W; McCulloch L; Rothstein A J Gen Physiol; 1978 Nov; 72(5):607-30. PubMed ID: 739255 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites. Macara IG; Cantley LC Biochemistry; 1981 Sep; 20(20):5695-701. PubMed ID: 7295699 [TBL] [Abstract][Full Text] [Related]
5. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system. Knauf PA; Breuer W; McCulloch L; Rothstein A J Gen Physiol; 1978 Nov; 72(5):631-49. PubMed ID: 739256 [TBL] [Abstract][Full Text] [Related]
6. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry. Knauf PA; Law FY; Tarshis T; Furuya W J Gen Physiol; 1984 May; 83(5):683-701. PubMed ID: 6736916 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of anion transport in red blood cells: role of membrane proteins. Rothstein A; Cabantchik ZI; Knauf P Fed Proc; 1976 Jan; 35(1):3-10. PubMed ID: 1245231 [TBL] [Abstract][Full Text] [Related]
8. Toxic chemical agents as probes for permeation systems of the red blood cell. Rothstein A; Knauf PA Adv Exp Med Biol; 1977; 84():319-51. PubMed ID: 331905 [TBL] [Abstract][Full Text] [Related]
9. Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system. Knauf PA; Mann NA; Kalwas JE; Spinelli LJ; Ramjeesingh M Am J Physiol; 1987 Nov; 253(5 Pt 1):C652-61. PubMed ID: 3688213 [TBL] [Abstract][Full Text] [Related]
10. Anion transport in relation to proteolytic dissection of band 3 protein. Grinstein S; Ship S; Rothstein A Biochim Biophys Acta; 1978 Feb; 507(2):294-304. PubMed ID: 626736 [TBL] [Abstract][Full Text] [Related]
11. Interactions of inhibitors on anion transporter of human erythrocyte. Fröhlich O; Gunn RB Am J Physiol; 1987 Feb; 252(2 Pt 1):C153-62. PubMed ID: 3826335 [TBL] [Abstract][Full Text] [Related]
12. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein. Bjerrum PJ; Wieth JO; Borders CL J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266 [TBL] [Abstract][Full Text] [Related]
13. NIP- and NAP-taurine bind to external modifier site of AE1 (band 3), at which iodide inhibits anion exchange. Knauf PA; Spinelli LJ Am J Physiol; 1995 Aug; 269(2 Pt 1):C410-6. PubMed ID: 7653523 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. Ship S; Shami Y; Breuer W; Rothstein A J Membr Biol; 1977 May; 33(3-4):311-23. PubMed ID: 864693 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions. Eidelman O; Cabantchik ZI J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420 [TBL] [Abstract][Full Text] [Related]
16. Identification of the Cl- transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe. Shami Y; Rothstein A; Knauf PA Biochim Biophys Acta; 1978 Apr; 508(2):357-63. PubMed ID: 638145 [TBL] [Abstract][Full Text] [Related]
17. Anion-selectivity of the swelling-activated osmolyte channel in eel erythrocytes. Lewis RA; Bursell JD; Kirk K J Membr Biol; 1996 Jan; 149(2):103-11. PubMed ID: 8834117 [TBL] [Abstract][Full Text] [Related]
18. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. Knauf PA; Law FY; Marchant PJ J Gen Physiol; 1983 Jan; 81(1):95-126. PubMed ID: 6833998 [TBL] [Abstract][Full Text] [Related]
19. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS). Lepke S; Fasold H; Pring M; Passow H J Membr Biol; 1976 Oct; 29(1-2):147-77. PubMed ID: 978716 [TBL] [Abstract][Full Text] [Related]
20. Inhibitors of anion exchanger activity reduce sodium chloride-dependent taurine transport by brush border vesicles. Chesney RW; Budreau AM Adv Exp Med Biol; 1994; 359():111-20. PubMed ID: 7887252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]