BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 448327)

  • 1. Transmembrane effects of irreversible inhibitors of anion transport in red blood cells. Evidence for mobile transport sites.
    Grinstein S; McCulloch L; Rothstein A
    J Gen Physiol; 1979 Apr; 73(4):493-514. PubMed ID: 448327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of an anionic photoreactive probe with the anion transport system of the human red blood cell.
    Cabantchik ZI; Knauf PA; Ostwald T; Markus H; Davidson L; Breuer W; Rothstein A
    Biochim Biophys Acta; 1976 Dec; 455(2):526-37. PubMed ID: 999926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetry of the red cell anion exchange system. Different mechanisms of reversible inhibition by N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) at the inside and outside of the membrane.
    Knauf PA; Ship S; Breuer W; McCulloch L; Rothstein A
    J Gen Physiol; 1978 Nov; 72(5):607-30. PubMed ID: 739255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbenedisulfonate and NAP-taurine binding sites.
    Macara IG; Cantley LC
    Biochemistry; 1981 Sep; 20(20):5695-701. PubMed ID: 7295699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-(4-azido-2-nitrophenyl)-2-aminoethylsulfonate (NAP-taurine) as a photoaffinity probe for identifying membrane components containing the modifier site of the human red blood cell anion exchange system.
    Knauf PA; Breuer W; McCulloch L; Rothstein A
    J Gen Physiol; 1978 Nov; 72(5):631-49. PubMed ID: 739256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the transport site conformation on the binding of external NAP-taurine to the human erythrocyte anion exchange system. Evidence for intrinsic asymmetry.
    Knauf PA; Law FY; Tarshis T; Furuya W
    J Gen Physiol; 1984 May; 83(5):683-701. PubMed ID: 6736916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of anion transport in red blood cells: role of membrane proteins.
    Rothstein A; Cabantchik ZI; Knauf P
    Fed Proc; 1976 Jan; 35(1):3-10. PubMed ID: 1245231
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxic chemical agents as probes for permeation systems of the red blood cell.
    Rothstein A; Knauf PA
    Adv Exp Med Biol; 1977; 84():319-51. PubMed ID: 331905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system.
    Knauf PA; Mann NA; Kalwas JE; Spinelli LJ; Ramjeesingh M
    Am J Physiol; 1987 Nov; 253(5 Pt 1):C652-61. PubMed ID: 3688213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anion transport in relation to proteolytic dissection of band 3 protein.
    Grinstein S; Ship S; Rothstein A
    Biochim Biophys Acta; 1978 Feb; 507(2):294-304. PubMed ID: 626736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of inhibitors on anion transporter of human erythrocyte.
    Fröhlich O; Gunn RB
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C153-62. PubMed ID: 3826335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ; Wieth JO; Borders CL
    J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NIP- and NAP-taurine bind to external modifier site of AE1 (band 3), at which iodide inhibits anion exchange.
    Knauf PA; Spinelli LJ
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C410-6. PubMed ID: 7653523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells.
    Ship S; Shami Y; Breuer W; Rothstein A
    J Membr Biol; 1977 May; 33(3-4):311-23. PubMed ID: 864693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the Cl- transport site of human red blood cells by a kinetic analysis of the inhibitory effects of a chemical probe.
    Shami Y; Rothstein A; Knauf PA
    Biochim Biophys Acta; 1978 Apr; 508(2):357-63. PubMed ID: 638145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anion-selectivity of the swelling-activated osmolyte channel in eel erythrocytes.
    Lewis RA; Bursell JD; Kirk K
    J Membr Biol; 1996 Jan; 149(2):103-11. PubMed ID: 8834117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism.
    Knauf PA; Law FY; Marchant PJ
    J Gen Physiol; 1983 Jan; 81(1):95-126. PubMed ID: 6833998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4'-diisothiocyano stilbene-2,2'-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS).
    Lepke S; Fasold H; Pring M; Passow H
    J Membr Biol; 1976 Oct; 29(1-2):147-77. PubMed ID: 978716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitors of anion exchanger activity reduce sodium chloride-dependent taurine transport by brush border vesicles.
    Chesney RW; Budreau AM
    Adv Exp Med Biol; 1994; 359():111-20. PubMed ID: 7887252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.