These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 448749)

  • 1. Energetics of peptide bond formation at elevated temperatures.
    Flegmann AW; Tattersall R
    J Mol Evol; 1979 Apr; 12(4):349-55. PubMed ID: 448749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Possible Path to Prebiotic Peptides Involving Silica and Hydroxy Acid-Mediated Amide Bond Formation.
    McKee AD; Solano M; Saydjari A; Bennett CJ; Hud NV; Orlando TM
    Chembiochem; 2018 Sep; 19(18):1913-1917. PubMed ID: 29959812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide synthesis in aqueous environments: the role of extreme conditions on peptide bond formation and peptide hydrolysis.
    Schreiner E; Nair NN; Marx D
    J Am Chem Soc; 2009 Sep; 131(38):13668-75. PubMed ID: 19725519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum chemical studies of a model for peptide bond formation. 3. Role of magnesium cation in formation of amide and water from ammonia and glycine.
    Oie T; Loew GH; Burt SK; MacElroy RD
    J Am Chem Soc; 1984; 106(26):8007-13. PubMed ID: 11541992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanamide mediated syntheses under plausible primitive earth conditions. III. Synthesis of peptides.
    Nooner DW; Sherwood E; More MA; Oró J
    J Mol Evol; 1977 Dec; 10(3):211-20. PubMed ID: 599571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic peptide-formation in the solid state. III. Condensation reactions of glycine in solid state mixtures containing inorganic polyphosphates.
    Sawai H; Orgel LE
    J Mol Evol; 1975 Nov; 6(3):185-97. PubMed ID: 1539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. When the Surface Matters: Prebiotic Peptide-Bond Formation on the TiO
    Pantaleone S; Ugliengo P; Sodupe M; Rimola A
    Chemistry; 2018 Nov; 24(61):16292-16301. PubMed ID: 30212609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prebiotic peptide-formation in the solid state. I. Reactions of benzoate ion and glycine with adenosine 5'-phosphorimidazolide.
    Lohrmann R; Ranganathan R; Sawai H; Orgel LE
    J Mol Evol; 1975 Jun; 5(1):57-73. PubMed ID: 1177327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prebiotic Peptide Bond Formation Through Amino Acid Phosphorylation. Insights from Quantum Chemical Simulations.
    Martínez-Bachs B; Rimola A
    Life (Basel); 2019 Sep; 9(3):. PubMed ID: 31527465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids.
    Holden DT; Morato NM; Cooks RG
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2212642119. PubMed ID: 36191178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanochemical Prebiotic Peptide Bond Formation*.
    Stolar T; Grubešić S; Cindro N; Meštrović E; Užarević K; Hernández JG
    Angew Chem Int Ed Engl; 2021 Jun; 60(23):12727-12731. PubMed ID: 33769680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of cis-trans isomerization of prolyl peptides by cyclophilin.
    Hur S; Bruice TC
    J Am Chem Soc; 2002 Jun; 124(25):7303-13. PubMed ID: 12071739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prebiotic peptide-formation in the solid state. II. Reaction of glycine with adenosine 5'-triphosphate and P1,P2-diadenosine-pyrophosphate.
    Sawai H; Lohrmann R; Orgel LE
    J Mol Evol; 1975 Nov; 6(3):165-84. PubMed ID: 1538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment.
    White DH; Erickson JC
    J Mol Evol; 1980 Dec; 16(3-4):279-90. PubMed ID: 7205965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does silica surface catalyse peptide bond formation? New insights from first-principles calculations.
    Rimola A; Tosoni S; Sodupe M; Ugliengo P
    Chemphyschem; 2006 Jan; 7(1):157-63. PubMed ID: 16345117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine peptide bond formation catalyzed by faujasite.
    Phuakkong O; Bobuatong K; Pantu P; Boekfa B; Probst M; Limtrakul J
    Chemphyschem; 2011 Aug; 12(11):2160-8. PubMed ID: 21698739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of peptide bond formation in the gas phase through ion-molecule reactions.
    Redondo P; Martínez H; Cimas A; Barrientos C; Largo A
    Phys Chem Chem Phys; 2013 Aug; 15(31):13005-12. PubMed ID: 23817675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance.
    Dentino AR; Westerman PW; Yeagle PL
    Biochim Biophys Acta; 1995 May; 1235(2):213-20. PubMed ID: 7756328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Kinetics of alpha-chymotrypsin catalyzed hydrolysis in equilibrium. II. Comparison of ester and amide substrates].
    Gurova AG; Ginodman LM; Antonov VK
    Mol Biol (Mosk); 1977; 11(5):1155-9. PubMed ID: 618342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of designed antimicrobial peptides in solution and micelles.
    Javadpour MM; Barkley MD
    Biochemistry; 1997 Aug; 36(31):9540-9. PubMed ID: 9236000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.