These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. n-alkanes as a substratum for riboflavin production. I. Investigations of the dynamics of the flavinogenesis in chosen yeasts of the genus candida. Olczyk C Pol J Pharmacol Pharm; 1978; 30(1):83-8. PubMed ID: 643742 [TBL] [Abstract][Full Text] [Related]
23. Ascorbic acid specific utilization by some yeasts. Costamagna L; Rosi I; Garuccio I; Arrigoni O Can J Microbiol; 1986 Sep; 32(9):756-8. PubMed ID: 3779527 [TBL] [Abstract][Full Text] [Related]
24. Determination of four- and five-ring condensed hydrocarbons. I. Analysis of polynuclear aromatic hydrocarbons in yeast produced by growth on both n-hydrocarbon and dextrose feeds. McGinnis EL; Norris MS J Agric Food Chem; 1975; 23(2):221-5. PubMed ID: 1133293 [No Abstract] [Full Text] [Related]
25. [Activity and substrate specificity of the alcohol dehydrogenases of n-alkane oxidizing yeasts]. Sapozhnikova GP; Krauzova VI Mikrobiologiia; 1979; 48(5):793-7. PubMed ID: 574184 [TBL] [Abstract][Full Text] [Related]
27. [Cytochrome P-450 content in yeast cells during growth on hexadecane]. Mauérsberger S; Matiashova RN Mikrobiologiia; 1980; 49(4):571-7. PubMed ID: 6997703 [TBL] [Abstract][Full Text] [Related]
28. [Search for lectin-producers among representatives of some yeast genera]. Babich TV; Kovalenko EO; Nahorna SS; Het'man KI; Pidhors'kyĭ VS Mikrobiol Z; 2002; 64(6):41-6. PubMed ID: 12664549 [TBL] [Abstract][Full Text] [Related]
29. Yeast species utilizing uric acid, adenine, n-alkylamines or diamines as sole source of carbon and energy. Middelhoven WJ; De Kievit H; Biesbroek AL Antonie Van Leeuwenhoek; 1985; 51(3):289-301. PubMed ID: 4091535 [TBL] [Abstract][Full Text] [Related]
30. Growth of Prototheca isolates on n-hexadecane and mixed-hydrocarbon substrate. Walker JD; Pore RS Appl Environ Microbiol; 1978 Apr; 35(4):694-7. PubMed ID: 565616 [TBL] [Abstract][Full Text] [Related]
31. Ascospore formation in yeasts during active growth on hydrocarbons. Lonsane BK; Singh HD; Baruah JN; Iyengar MS Arch Mikrobiol; 1972; 87(1):41-6. PubMed ID: 5086058 [No Abstract] [Full Text] [Related]
32. Isolation and molecular characterization of biosurfactant producing yeasts from the soil samples contaminated with petroleum derivatives. Yalçın HT; Ergin-Tepebaşı G; Uyar E J Basic Microbiol; 2018 Sep; 58(9):782-792. PubMed ID: 29938807 [TBL] [Abstract][Full Text] [Related]
33. Use of n-hexadecane as an oxygen vector to improve Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Liu YS; Wu JY J Appl Microbiol; 2006 Nov; 101(5):1033-8. PubMed ID: 17040227 [TBL] [Abstract][Full Text] [Related]
34. Assimilation of hydrocarbons. I. Proportion of fatty acids in the cell fat. Pelechová J; Krumphanzl V; Uher J; Dyr J Folia Microbiol (Praha); 1971; 16(2):103-9. PubMed ID: 5102830 [No Abstract] [Full Text] [Related]
35. The production of extracellular polysaccharides by a hydrocarbon assimilating yeast. Hussein MM; Jwanny EW Acta Microbiol Pol B; 1975; 7(4):253-8. PubMed ID: 1227255 [TBL] [Abstract][Full Text] [Related]
36. Killer activity of yeasts isolated from the water environment. Vadkertiová R; Sláviková E Can J Microbiol; 1995 Sep; 41(9):759-66. PubMed ID: 7585352 [TBL] [Abstract][Full Text] [Related]
37. [Composition of the microorganism population in an unprotected fermentation process]. Wünsche L; Sattler K; Gradova NB; Meinhold I; Hedlich R; Brendler W; Uhlig H; Rodionova GS; Saikina AI Z Allg Mikrobiol; 1981; 21(6):469-74. PubMed ID: 7293247 [TBL] [Abstract][Full Text] [Related]
38. Selection of yeasts for single cell protein production on media based on Jerusalem artichoke extracts. Apaire V; Guiraud JP; Galzy P Z Allg Mikrobiol; 1983; 23(4):211-8. PubMed ID: 6613165 [TBL] [Abstract][Full Text] [Related]