These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 449598)

  • 41. Regulation of choline acetyltransferase in primary cell cultures of spinal cord by neurotransmitter L-norepinephrine.
    Ishida I; Deguchi T
    Brain Res; 1983 Mar; 283(1):13-23. PubMed ID: 6299476
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The dynamics of choline acetyltransferase and acetylcholinesterase changes in dog spinal cord during ischemia.
    Malatová Z; Chavko M; Marsala J
    Gen Physiol Biophys; 1984 Jun; 3(3):231-8. PubMed ID: 6479579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice.
    Giller EL; Schrier BK; Shainberg A; Fisk HR; Nelson PG
    Science; 1973 Nov; 182(4112):588-9. PubMed ID: 4270498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Choline acetyltransferase induction in cultured neurons: dissociated spinal cord cells are dependent on muscle cells, organotypic explants are not.
    Meyer T; Burkart W; Jockusch H
    Neurosci Lett; 1979 Jan; 11(1):59-62. PubMed ID: 431887
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell survival characteristics and choline acetyltransferase activity in motor neurone-enriched cultures from chick embryo spinal cord.
    Flanigan TP; Dickson JG; Walsh FS
    J Neurochem; 1985 Oct; 45(4):1323-6. PubMed ID: 4031894
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium.
    Giller EL; Neale JH; Bullock PN; Schrier BK; Nelson PG
    J Cell Biol; 1977 Jul; 74(1):16-29. PubMed ID: 874000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism.
    Chalimoniuk M; King-Pospisil K; Pedersen WA; Malecki A; Wylegala E; Mattson MP; Hennig B; Toborek M
    J Neurochem; 2004 Aug; 90(3):629-36. PubMed ID: 15255940
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TCP enhances the survival of human fetal spinal cord cells in culture.
    Levallois C; Calvet MC; Kamenka JM; Petite D; Privat A
    Brain Res; 1992 Feb; 573(2):327-30. PubMed ID: 1504769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Age-dependent requirements of cultured spinal cord neurons.
    Micaglio G; Askanas V; Moriwaka F; Engel WK
    Dev Neurosci; 1988; 10(1):12-6. PubMed ID: 3371229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Central cholinergic mechanisms underlying adaptation to reduced cholinesterase activity.
    Wecker L; Mobley PL; Dettbarn WD
    Biochem Pharmacol; 1977 Apr; 26(7):633-7. PubMed ID: 856193
    [No Abstract]   [Full Text] [Related]  

  • 51. Developmental change in choline acetyltransferase activity in nerve endings of latissimus dorsii muscles in the chick embryo: influence of chronic spinal cord stimulation.
    Gardahaut MF; Rouaud T; Renaud D; Le Douarin G
    Neurosci Lett; 1983 Dec; 43(2-3):299-302. PubMed ID: 6324047
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Choline acetyltransferase and substance P-like immuno-reactivity in the human spinal cord: changes in amyotrophic lateral sclerosis.
    Gillberg PG; Aquilonius SM; Eckernäs SA; Lundqvist G; Winblad B
    Brain Res; 1982 Nov; 250(2):394-7. PubMed ID: 6184125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of TRH and TRH analogues RGH-2202 and DN-1417 on cultured ventral spinal cord neurons.
    Askanas V; Engel WK; Eagleson K; Micaglio G
    Ann N Y Acad Sci; 1989; 553():325-36. PubMed ID: 2497677
    [No Abstract]   [Full Text] [Related]  

  • 54. Leukemia inhibitory factor promotes the neuronal development of spinal cord precursors from the neural tube.
    Richards LJ; Kilpatrick TJ; Bartlett PF; Murphy M
    J Neurosci Res; 1992 Nov; 33(3):476-84. PubMed ID: 1469749
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of acetylcholinesterase in chick muscle cultures after treatment with diisopropylphosphorofluoridate: ribonucleic acid and protein synthesis.
    Walker CR; Wilson BW
    Neuroscience; 1976 Dec; 1(6):509-13. PubMed ID: 11370244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cholinergic enzymes in neurofibrillary degeneration produced by aluminium.
    Yates CM; Simpson J; Russell D; Gordon A
    Brain Res; 1980 Sep; 197(1):269-74. PubMed ID: 7397560
    [No Abstract]   [Full Text] [Related]  

  • 57. Central cholinergic activity in aluminum-induced neurofibrillary degeneration.
    Hetnarski B; Wisniewski HM; Iqbal K; Dziedzic JD; Lajtha A
    Ann Neurol; 1980 May; 7(5):489-90. PubMed ID: 7396428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cholinergic properties of embryonic chick sensory neurons.
    Bhave SV; Wakade AR
    Neurosci Lett; 1988 Sep; 91(3):333-8. PubMed ID: 3185971
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The recovery of acetylcholinesterase activity in the superior cervical ganglion of the rat following its inhibition by diisopropylphosphorofluoridate: a biochemical and cytochemical study.
    Somogyi P; Chubb IW
    Neuroscience; 1976; 1(5):413-21. PubMed ID: 1004714
    [No Abstract]   [Full Text] [Related]  

  • 60. Solubilization of a membrane factor that stimulates levels of substance P and choline acetyltransferase in sympathetic neurons.
    Wong V; Kessler JA
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8726-9. PubMed ID: 2446332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.