These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 4499923)

  • 1. The compression model: its application in determining post-traumatic vascular leakage routes.
    Beggs JL; Waggener JD
    Proc Veterans Adm Spinal Cord Inj Conf; 1973 Oct 29-31; (19):101-5. PubMed ID: 4499923
    [No Abstract]   [Full Text] [Related]  

  • 2. Sequential pathological changes secondary to impact injury experimental model.
    Goodkin R
    Proc Veterans Adm Spinal Cord Inj Conf; 1973 Oct 29-31; (19):86-100. PubMed ID: 4499962
    [No Abstract]   [Full Text] [Related]  

  • 3. Evolution of edema in the acutely injured spinal cord: a fluorescence microscopic study.
    Green BA; Wagner FC
    Surg Neurol; 1973 Mar; 1(2):98-101. PubMed ID: 4129675
    [No Abstract]   [Full Text] [Related]  

  • 4. [MRI in the early stage of spinal cord injury: does it have clinical relevance? An experimental study].
    Hannmann TT; Freund M
    Rofo; 2007 May; 179(5):506-15. PubMed ID: 17436185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Animal models of spinal cord contusion injuries.
    Khan T; Havey RM; Sayers ST; Patwardhan A; King WW
    Lab Anim Sci; 1999 Apr; 49(2):161-72. PubMed ID: 10331546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressure-induced lesions in the spinal cord of rabbits.
    Wright F; Palmer AC; Payne JE
    Res Vet Sci; 1974 Nov; 17(3):337-43. PubMed ID: 4445580
    [No Abstract]   [Full Text] [Related]  

  • 7. Sequential pathologic changes in spinal cord injury: a preliminary report.
    Goodkin R; Campbell JB
    Surg Forum; 1969; 20():430-2. PubMed ID: 5383108
    [No Abstract]   [Full Text] [Related]  

  • 8. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple, inexpensive and easily reproducible model of spinal cord injury in mice: morphological and functional assessment.
    Marques SA; Garcez VF; Del Bel EA; Martinez AM
    J Neurosci Methods; 2009 Feb; 177(1):183-93. PubMed ID: 19013194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [2 types of post-traumatic spinal cord edema in animal experiments].
    Nĕmecek S; Petr R; Suba P; Rozsíval V; Mĕlka O
    Cesk Neurol Neurochir; 1976 May; 39(3):124-30. PubMed ID: 949797
    [No Abstract]   [Full Text] [Related]  

  • 11. Local hypothermia as treatment of experimentally induced spinal cord contusion: quantitative analysis of beneficient effect.
    Green BA; Khan T; Raimondi AJ
    Surg Forum; 1973; 24():436-8. PubMed ID: 4806053
    [No Abstract]   [Full Text] [Related]  

  • 12. Model of traumatic spinal cord injury in Macaca fascicularis: similarity of experimental lesions created by epidural catheter to human spinal cord injury.
    Nesathurai S; Graham WA; Mansfield K; Magill D; Sehgal P; Westmoreland SV; Prusty S; Rosene DL; Sledge JB
    J Med Primatol; 2006 Dec; 35(6):401-4. PubMed ID: 17214670
    [No Abstract]   [Full Text] [Related]  

  • 13. A new model of severe neurogenic pulmonary edema in spinal cord injured rat.
    Sedý J; Urdzíková L; Likavcanová K; Hejcl A; Jendelová P; Syková E
    Neurosci Lett; 2007 Aug; 423(2):167-71. PubMed ID: 17698290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The distribution of tissue damage in the spinal cord is influenced by the contusion velocity.
    Sparrey CJ; Choo AM; Liu J; Tetzlaff W; Oxland TR
    Spine (Phila Pa 1976); 2008 Oct; 33(22):E812-9. PubMed ID: 18923304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinal cord injury: sequential morphology and hypothermic stabilization.
    White RJ; Albin MS; Harris LS; Yashon D
    Surg Forum; 1969; 20():432-4. PubMed ID: 4986410
    [No Abstract]   [Full Text] [Related]  

  • 16. The neuroprotective effects of z-DEVD.fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats.
    Barut S; Unlü YA; Karaoğlan A; Tunçdemir M; Dağistanli FK; Oztürk M; Colak A
    Surg Neurol; 2005 Sep; 64(3):213-20; discussion 220. PubMed ID: 16099247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Urgent surgical decompression compared to methylprednisolone for the treatment of acute spinal cord injury: a randomized prospective study in beagle dogs.
    Rabinowitz RS; Eck JC; Harper CM; Larson DR; Jimenez MA; Parisi JE; Friedman JA; Yaszemski MJ; Currier BL
    Spine (Phila Pa 1976); 2008 Oct; 33(21):2260-8. PubMed ID: 18827690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connexin43 and astrocytic gap junctions in the rat spinal cord after acute compression injury.
    Theriault E; Frankenstein UN; Hertzberg EL; Nagy JI
    J Comp Neurol; 1997 Jun; 382(2):199-214. PubMed ID: 9183689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma.
    Gorio A; Gokmen N; Erbayraktar S; Yilmaz O; Madaschi L; Cichetti C; Di Giulio AM; Vardar E; Cerami A; Brines M
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9450-5. PubMed ID: 12082184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute spinal cord injury in primates produced by an inflatable extradural cuff.
    Tator CH
    Can J Surg; 1973 May; 16(3):222-31. PubMed ID: 4634075
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.