These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 4505659)

  • 81. Spectral evidence for distinct mode of interaction of nucleotides with rabbit muscle and rabbit liver aldolase.
    Kochman M; Mas MT
    Biochim Biophys Acta; 1981 Jan; 667(1):218-22. PubMed ID: 7213798
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Subunit interactions in hybrids of native, carboxypeptidase-treated and citraconylated rabbit muscle aldolase.
    Gibbons I
    Biochem J; 1974 May; 139(2):343-50. PubMed ID: 4447615
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Equilibrium sedimentation of proteins in acid solutions. Dissociation of aldolase by aqueous acetic acid.
    Szuchet S; Yphantis DA
    Biochemistry; 1973 Dec; 12(25):5115-27. PubMed ID: 4799941
    [No Abstract]   [Full Text] [Related]  

  • 84. Use of a diimidoester cross-linking reagent to examine the subunit structure of rabbit muscle pyruvate kinase.
    Davies GE; Kaplan JG
    Can J Biochem; 1972 Apr; 50(4):416-22. PubMed ID: 5063715
    [No Abstract]   [Full Text] [Related]  

  • 85. Organic phosphate groups in native and borohydride-reduced aldolase.
    Kobashi K; Lai CY; Horecker BL
    Arch Biochem Biophys; 1966 Nov; 117(2):437-44. PubMed ID: 5972827
    [No Abstract]   [Full Text] [Related]  

  • 86. Identification of the C-1-phosphate-binding arginine residue of rabbit-muscle aldolase. Isolation of 1,2-cyclohexanedione-labeled peptide by chemisorption chromatography.
    Patthy L; Váradi A; Thész J; Kovács K
    Eur J Biochem; 1979 Sep; 99(2):309-13. PubMed ID: 499203
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Increased proteolytic susceptibility of aldolase induced by actin binding.
    Dedman JR; Payne DM; Harris BG
    Biochem Biophys Res Commun; 1975 Aug; 65(4):1170-6. PubMed ID: 1052418
    [No Abstract]   [Full Text] [Related]  

  • 88. STUDIES ON THE CARBOXYL- AND AMINO-TERMINAL RESIDUES OF RABBIT MUSCLE ALDOLASE.
    WINSTEAD JA; WOLD F
    J Biol Chem; 1964 Dec; 239():4212-6. PubMed ID: 14247671
    [No Abstract]   [Full Text] [Related]  

  • 89. Iodination of muscle fructose diphosphate aldolase.
    Wassarman PM; Kaplan NO
    J Biol Chem; 1968 Feb; 243(4):720-9. PubMed ID: 5638588
    [No Abstract]   [Full Text] [Related]  

  • 90. Conversion of bacterial aldolase from vegetative to spore form by a sporulation-specific protease.
    Sadoff HL; Celikkol E; Engelbrecht HL
    Proc Natl Acad Sci U S A; 1970 Jul; 66(3):844-9. PubMed ID: 4987627
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microenzymic method for the quantitative analysis of acetyl groups in proteins and peptides.
    Stegink LD
    Anal Biochem; 1967 Sep; 20(3):502-16. PubMed ID: 4292707
    [No Abstract]   [Full Text] [Related]  

  • 92. [On the organ- and species specificity of antibodies against rabbit muscle aldolase].
    Globig W; Matzelt D; Schwick G; Störiko K
    Clin Chim Acta; 1965 Nov; 12(5):477-83. PubMed ID: 5865882
    [No Abstract]   [Full Text] [Related]  

  • 93. Hybridization between fructose diphosphate aldolase subunits derived from diverse biological systems: anomolous hybridization behavior of some aldolase subunit types.
    Swain MS; Lebherz HG
    Arch Biochem Biophys; 1986 Jan; 244(1):35-41. PubMed ID: 3947066
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Crosslinking with bifunctional reagents as a means for studying the symmetry of oligomeric proteins.
    Hajdu J; Bartha F; Friedrich P
    Eur J Biochem; 1976 Sep; 68(2):373-83. PubMed ID: 987906
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Subunit structure of aldolase: chemical and crystallographic evidence.
    Eagles PA; Johnson LN; Joynson MA; McMurray CH; Gutfreund H
    J Mol Biol; 1969 Nov; 45(3):533-44. PubMed ID: 5394189
    [No Abstract]   [Full Text] [Related]  

  • 96. Mass spectrometric evaluation of synthetic peptides as primary structure models for peptide and protein deamidation.
    Robinson NE; Robinson AB; Merrifield RB
    J Pept Res; 2001 Jun; 57(6):483-93. PubMed ID: 11437952
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The mechanism of action of aldolases. XI. Activation by aromatic sulfhydryl reagents and beta-elimination of selected thiol groups.
    Cremona T; Kowal J; Horecker BL
    Proc Natl Acad Sci U S A; 1965 Jun; 53(6):1395-403. PubMed ID: 5217642
    [No Abstract]   [Full Text] [Related]  

  • 98. Glycine formation via threonine and serine aldolase. Its interrelation with the pyruvate formate lyase pathway of one-carbon unit synthesis in Clostridium kluyveri.
    Jungermann KA; Schmidt W; Kirchniawy FH; Rupprecht EH; Thauer RK
    Eur J Biochem; 1970 Nov; 16(3):424-9. PubMed ID: 5477287
    [No Abstract]   [Full Text] [Related]  

  • 99. Chronoregulation by asparagine deamidation.
    Weintraub SJ; Deverman BE
    Sci STKE; 2007 Oct; 2007(409):re7. PubMed ID: 17957089
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Aldolase and protease: unsuspected structural homology.
    Morse DE; Horecker BL
    Science; 1968 Aug; 161(3843):813. PubMed ID: 5663814
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.