BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 4506783)

  • 1. Resonance Raman spectra of hemoglobin and cytochrome c: inverse polarization and vibronic scattering.
    Spiro TG; Strekas TC
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2622-6. PubMed ID: 4506783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman scattering from hemoproteins. Effects of ligands upon the Raman spectra of various C-type cytochromes.
    Kitagawa T; Kyogoku Y; Iizuka T; Ikeda-Saito M; Yamanaka T
    J Biochem; 1975 Oct; 78(4):719-28. PubMed ID: 2584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance raman studies of a c type algal cytochrome. Deuterium shifts and a comparison with mammalian cytochrome c.
    Yamamoto T; Palmer G; Crespi H
    Biochim Biophys Acta; 1976 Jul; 439(1):232-9. PubMed ID: 182237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the resonance Raman spectra of carbon monoxy and oxy hemoglobin and myoglobin: similarities and differences in heme electron distribution.
    Rimai L; Salmeen I; Petering DH
    Biochemistry; 1975 Jan; 14(2):378-82. PubMed ID: 1120109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectra of cytochrome b5 and its mesoheme and deuteroheme modifications.
    Adar F
    Arch Biochem Biophys; 1975 Oct; 170(2):644-50. PubMed ID: 1238050
    [No Abstract]   [Full Text] [Related]  

  • 6. Coherent anti-Stokes Raman scattering (CARS) spectra, with resonance enhancement, of cytochrome c and vitamin B12 in dilute aqueous solution.
    Nestor J; Spiro TG; Klauminzer G
    Proc Natl Acad Sci U S A; 1976 Oct; 73(10):3329-32. PubMed ID: 185608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman spectra of the b- and c-type cytochromes of succinate-cytochrome c reductase.
    Adar F; Erecińska M
    Arch Biochem Biophys; 1974 Dec; 165(2):570-80. PubMed ID: 4374136
    [No Abstract]   [Full Text] [Related]  

  • 8. The valence and spin state of iron in oxyhemoglobin as inferred from resonance Raman spectroscopy.
    Yammoto T; Palmer G
    J Biol Chem; 1973 Jul; 248(14):5211-3. PubMed ID: 4352197
    [No Abstract]   [Full Text] [Related]  

  • 9. Resonance Raman scattering from hemoproteins: pH-dependence of Raman spectra of ferrous dicarboxymethyl-methionyl-cytochrome c.
    Ikeda-Saito M; Kitagawa T; Iizuka T; Kyogoku Y
    FEBS Lett; 1975 Feb; 50(2):233-5. PubMed ID: 234859
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular near-field antenna effect in resonance hyper-Raman scattering: intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions.
    Shimada R; Hamaguchi HO
    J Chem Phys; 2014 May; 140(20):204506. PubMed ID: 24880300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemoglobin: resonance Raman spectra.
    Strekas TC; Spiro TG
    Biochim Biophys Acta; 1972 May; 263(3):830-3. PubMed ID: 5034222
    [No Abstract]   [Full Text] [Related]  

  • 12. Cytochrome c: resonance Raman spectra.
    Strekas TC; Spiro TG
    Biochim Biophys Acta; 1972 Aug; 278(1):188-92. PubMed ID: 4341727
    [No Abstract]   [Full Text] [Related]  

  • 13. Orientation effects in waveguide resonance Raman spectroscopy of monolayers.
    Kanger JS; Otto C
    Appl Spectrosc; 2003 Dec; 57(12):1487-93. PubMed ID: 14686770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant Contributions of the Albrecht's A Term to Nonresonant Raman Scattering Processes.
    Gong ZY; Tian G; Duan S; Luo Y
    J Chem Theory Comput; 2015 Nov; 11(11):5385-90. PubMed ID: 26574328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combination of dynamic light scattering and polarized resonance Raman scattering applied in the study of Arenicola Marina extracellular hemoglobin.
    Jernshøj KD; Hassing S; Olsen LF
    J Chem Phys; 2013 Aug; 139(6):065104. PubMed ID: 23947894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red blood cells polarize green laser light revealing hemoglobin's enhanced non-fundamental Raman modes.
    Marzec KM; Perez-Guaita D; de Veij M; McNaughton D; Baranska M; Dixon MW; Tilley L; Wood BR
    Chemphyschem; 2014 Dec; 15(18):3963-8. PubMed ID: 25257821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonance Raman spectra of cobalt-substituted hemoglobin: cooperativity and displacement of the cobalt atom upon oxygenation.
    Woodruff WH; Spiro TG; Yonetani T
    Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1065-9. PubMed ID: 4524615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The importance of vibronic perturbations in ferrocytochrome c spectra: a reevaluation of spectral properties based on low-temperature optical absorption, resonance Raman, and molecular-dynamics simulations.
    Levantino M; Huang Q; Cupane A; Laberge M; Hagarman A; Schweitzer-Stenner R
    J Chem Phys; 2005 Aug; 123(5):054508. PubMed ID: 16108670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser Raman spectra of oxidized hydroperoxidases.
    Felton RH; Romans AY; Yu NT; Schonbaum GR
    Biochim Biophys Acta; 1976 May; 434(1):82-9. PubMed ID: 945750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonance Raman spectroscopic studies of heme proteins.
    Spiro TG
    Biochim Biophys Acta; 1975 Aug; 416(2):169-89. PubMed ID: 169917
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.