BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 4506783)

  • 21. Internal electric field in cytochrome C explored by visible electronic circular dichroism spectroscopy.
    Schweitzer-Stenner R
    J Phys Chem B; 2008 Aug; 112(33):10358-66. PubMed ID: 18665633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation.
    Wood BR; Caspers P; Puppels GJ; Pandiancherri S; McNaughton D
    Anal Bioanal Chem; 2007 Mar; 387(5):1691-703. PubMed ID: 17151857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resonance Raman spectral isolation of the a and a3 chromophores in cytochrome oxidase.
    Argade PV; Ching YC; Rousseau DL
    Biophys J; 1986 Oct; 50(4):613-20. PubMed ID: 3022834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solute-solvent intermolecular vibronic coupling as manifested by the molecular near-field effect in resonance hyper-Raman scattering.
    Shimada R; Hamaguchi HO
    J Chem Phys; 2011 Jan; 134(3):034516. PubMed ID: 21261377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface enhanced resonance Raman scattering as a probe of the spin state of structurally related cytochromes P-450 from rat liver.
    Kelly K; Rospendowski BN; Smith WE; Wolf CR
    FEBS Lett; 1987 Sep; 222(1):120-4. PubMed ID: 3653392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Symmetry properties of vibrational modes in mesoporphyrin IX dimethyl ester investigated by polarization-sensitive resonance Raman and CARS spectroscopy.
    Koster J; Popp J; Kiefer W; Schlücker S
    J Phys Chem A; 2006 Oct; 110(39):11252-9. PubMed ID: 17004734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Near-field depolarization of tip-enhanced Raman scattering by single azo-chromophores.
    Kharintsev SS; Gazizov AR; Salakhov MK; Kazarian SG
    Phys Chem Chem Phys; 2018 Oct; 20(37):24088-24098. PubMed ID: 30204183
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonance Raman scattering on the haem group of cytochrome c.
    Brunner H
    Biochem Biophys Res Commun; 1973 Apr; 51(4):888-94. PubMed ID: 4349997
    [No Abstract]   [Full Text] [Related]  

  • 30. Nitration of internal tyrosine of cytochrome c probed by resonance Raman scattering.
    Quaroni L; Smith WE
    Biospectroscopy; 1999; 5(5 Suppl):S71-6. PubMed ID: 10512540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance Raman scattering on haemoglobin.
    Brunner H; Sussner H
    Biochim Biophys Acta; 1973 May; 310(1):20-31. PubMed ID: 4710593
    [No Abstract]   [Full Text] [Related]  

  • 32. Nonplanar heme deformations and excited state displacements in nickel porphyrins detected by Raman spectroscopy at soret excitation.
    Huang Q; Medforth CJ; Schweitzer-Stenner R
    J Phys Chem A; 2005 Nov; 109(46):10493-502. PubMed ID: 16834304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultraviolet resonant Raman spectroscopy of nucleic acid components.
    Blazej DC; Peticolas WL
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):2639-43. PubMed ID: 268615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The conformational manifold of ferricytochrome c explored by visible and far-UV electronic circular dichroism spectroscopy.
    Hagarman A; Duitch L; Schweitzer-Stenner R
    Biochemistry; 2008 Sep; 47(36):9667-77. PubMed ID: 18702508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polarized Raman spectra of oriented fibers of A DNA and B DNA: anisotropic and isotropic local Raman tensors of base and backbone vibrations.
    Thomas GJ; Benevides JM; Overman SA; Ueda T; Ushizawa K; Saitoh M; Tsuboi M
    Biophys J; 1995 Mar; 68(3):1073-88. PubMed ID: 7756527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects.
    Guthmuller J; Champagne B
    J Phys Chem A; 2008 Apr; 112(14):3215-23. PubMed ID: 18327928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitive marker bands for the detection of spin states of heme in surface-enhanced resonance Raman scattering spectra of metmyoglobin.
    Kitahama Y; Egashira M; Suzuki T; Tanabe I; Ozaki Y
    Analyst; 2014 Dec; 139(24):6421-5. PubMed ID: 25335784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raman scattering tensors of adenine.
    Ushizawa K; Yimit A; Ueda T; Tsuboi M
    Nucleic Acids Symp Ser; 1997; (37):37-8. PubMed ID: 9585987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resonance raman scattering on the haem group of oxy- and deoxyhaemoglobin.
    Brunner H; Mayer A; Sussner H
    J Mol Biol; 1972 Sep; 70(1):153-6. PubMed ID: 5073351
    [No Abstract]   [Full Text] [Related]  

  • 40. Resonance Raman spectroscopic identification of a histidine ligand of b595 and the nature of the ligation of chlorin d in the fully reduced Escherichia coli cytochrome bd oxidase.
    Sun J; Kahlow MA; Kaysser TM; Osborne JP; Hill JJ; Rohlfs RJ; Hille R; Gennis RB; Loehr TM
    Biochemistry; 1996 Feb; 35(7):2403-12. PubMed ID: 8652583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.