BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 4508316)

  • 1. Blocking by histones of accessibility to DNA in chromatin: addition of histones.
    Mirsky AE; Silverman B; Panda NC
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3243-6. PubMed ID: 4508316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking by histones of accessibility to DNA in chromatin.
    Mirsky AE; Silverman B
    Proc Natl Acad Sci U S A; 1972 Aug; 69(8):2115-9. PubMed ID: 4506081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addition of histones to histone-depleted nuclei: effect on template activity toward DNA and RNA polymerases.
    Silverman B; Mirsky AE
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2637-41. PubMed ID: 4582193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of selective extraction of histones on template activities of chromatin by use of exogenous DNA and RNA polymerases.
    Mirsky AE; Silverman B
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):1973-5. PubMed ID: 4579008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thymocyte apoptosis induced by phosphorylation of histones is associated with the change in chromatin structure to allow easy accessibility of DNase.
    Enomoto R; Tatsuoka H; Yoshida Y; Komai T; Node K; Nogami R; Yamauchi A; Lee E
    IUBMB Life; 2002 Sep; 54(3):123-7. PubMed ID: 12489639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Competing interactions of lysine (f-1) and arginine (f-3) rich histone fractions during nucleohistone formation].
    Ashmarin IP; Muratchaeva PS
    Vestn Leningr Univ Biol; 1968 Aug; 3():85-93. PubMed ID: 5735916
    [No Abstract]   [Full Text] [Related]  

  • 7. Modification of histone binding in calf thymus chromatin by protamine.
    Wong TK; Marushige K
    Biochemistry; 1975 Jan; 14(1):122-7. PubMed ID: 1167334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences.
    Vidali G; Boffa LC; Bradbury EM; Allfrey VG
    Proc Natl Acad Sci U S A; 1978 May; 75(5):2239-43. PubMed ID: 276864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. METHODS FOR THE PURIFICATION OF THYMUS NUCLEI AND THEIR APPLICATION TO STUDIES OF NUCLEAR PROTEIN SYNTHESIS.
    ALLFREY VG; LITTAU VC; MIRSKY AE
    J Cell Biol; 1964 May; 21(2):213-31. PubMed ID: 14153483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution of the condensed chromatin structures of isolated thymocyte nuclei and the disruption of deoxyribonucleoprotein by inorganic phosphate and a phosphoprotein.
    Whitfield JF; Perris AD
    Exp Cell Res; 1968 Feb; 49(2):359-72. PubMed ID: 5760440
    [No Abstract]   [Full Text] [Related]  

  • 11. Release of chymotrypsin-like esterase from isolated rat peritoneal mast cells by arginine-rich calf thymus histone.
    Dekio S; Ishihara H; Yamura T
    Acta Allergol; 1976 Jun; 31(3):193-200. PubMed ID: 988943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased nuclear size in BHK21 cells after treatment with non-toxic levels of calf thymus histones.
    Latner AL; Turner GA; Cornell C
    Exp Cell Biol; 1979; 47(2):145-54. PubMed ID: 446839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of free F1 histone during nuclease digestion of rat liver chromatin.
    Chae CB
    Biochemistry; 1974 Mar; 13(6):1110-5. PubMed ID: 4814716
    [No Abstract]   [Full Text] [Related]  

  • 14. [Histones from Trypanosoma lewisi nuclei].
    Elpidina EN; Zaĭtseva GN; Krasheninnikov IA
    Biokhimiia; 1979 Oct; 44(10):1830-41. PubMed ID: 389296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis and decay of histone fractions and of deoxyribonucleic acid in the developing avian brain.
    Bondy SC
    Biochem J; 1971 Jul; 123(3):465-9. PubMed ID: 5126095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-induced crosslinking of histones to DNA in chromatin and core particles: implications in studying histone-DNA interactions.
    Stefanovsky VYu ; Dimitrov SI; Russanova VR; Angelov D; Pashev IG
    Nucleic Acids Res; 1989 Dec; 17(23):10069-81. PubMed ID: 2602113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNase-resistant fragments of DNA in chromatin.
    Kaliński A; Seyfried A; Toczko K
    Acta Biochim Pol; 1972; 19(4):377-82. PubMed ID: 4677127
    [No Abstract]   [Full Text] [Related]  

  • 18. Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro.
    Prusov AN; Smirnova TA; Kolomijtseva GY
    Biochemistry (Mosc); 2013 Feb; 78(2):176-84. PubMed ID: 23581988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of some properties of chromatin non-histone proteins and nuclear sap proteins.
    Umansky SR; Zotova RN; Kovalev YI
    Eur J Biochem; 1976 Jun; 65(2):503-12. PubMed ID: 949980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accessibility of chromatin to DNA polymerase I and location of the F1 histone.
    Saffhill R; Itzhaki RF
    Nucleic Acids Res; 1975 Jan; 2(1):113-9. PubMed ID: 1093142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.