These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 4515623)

  • 21. Dynamics of hemoglobin investigated by Mössbauer spectroscopy.
    Levy A; Alston K; Rifkind JM
    J Biomol Struct Dyn; 1984 Mar; 1(5):1299-309. PubMed ID: 6400821
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect.
    Nagatomo S; Okumura M; Saito K; Ogura T; Kitagawa T; Nagai M
    Biochemistry; 2017 Mar; 56(9):1261-1273. PubMed ID: 28199095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High resolution NMR studies of histidine-substituted and histidine-perturbed hemoglobin variants. Histidine assignments, electrostatic interactions at the protein surface, and implications for hemoglobin S polymerization.
    Craescu CT; Schaeffer C; Mispelter J; Garin J; Rosa J
    J Biol Chem; 1986 Jun; 261(17):7894-901. PubMed ID: 3711114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational changes in the hemoglobin S system as seen by proton binding.
    Scholberg HP; Fronticelli C; Bucci E
    J Biol Chem; 1980 Sep; 255(18):8592-8. PubMed ID: 7410379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isomeric incorporation of the Haem into monomeric haemoglobins of Chironomus thummi thummi. 2. The Bohr effect of the component III explained on a molecular basis and functional differences between the two isomeric structures.
    Ribbing W; Rüterjans H
    Eur J Biochem; 1980; 108(1):89-102. PubMed ID: 7408856
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The pK of the amino terminal groups of carbonmonoxy- and deoxyhemoglobin measured by dinitrophenylation in phosphate buffers.
    Bucci E
    Biophys Chem; 1982 Oct; 16(2):159-63. PubMed ID: 7139049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A proton nuclear magnetic resonance investigation of histidyl residues in sickle hemoglobin.
    Russu IM; Ho C
    Biochemistry; 1982 Sep; 21(20):5044-51. PubMed ID: 6291599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the pK values for the alpha-amino groups of human hemoglobin.
    Garner MH; Bogardt RA; Gurd FR
    J Biol Chem; 1975 Jun; 250(12):4398-404. PubMed ID: 237898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The contribution of histidine (HC3) (146 beta) to the R state Bohr effect of human hemoglobin.
    Kwiatkowski LD; Noble RW
    J Biol Chem; 1982 Aug; 257(15):8891-5. PubMed ID: 6807984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on the heterotropic interaction of hemoglobin. II. Role of beta-146 and beta-2 histidines in the alkaline Bohr effect.
    Ohe M; Kajita A
    J Biochem; 1977 Sep; 82(3):839-45. PubMed ID: 21177
    [No Abstract]   [Full Text] [Related]  

  • 31. Anion Bohr effect of human hemoglobin.
    Bucci E; Fronticelli C
    Biochemistry; 1985 Jan; 24(2):371-6. PubMed ID: 3978079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of histidine-122alpha in human haemoglobin as one of the unknown alkaline Bohr groups by hydrogen--tritium exchange.
    Nishikura K
    Biochem J; 1978 Aug; 173(2):651-7. PubMed ID: 29605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of histidine proton magnetic resonances of human carbonmonoxyhaemoglobin in different buffers.
    Perutz MF; Gronenborn AM; Clore GM; Shib DT; Craescu CT
    J Mol Biol; 1985 Nov; 186(2):471-3. PubMed ID: 3003366
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histidine Protonation States Regulate the State Transition from R State Hemoglobin.
    Yotsuya H; Tanaka M; Kitamura Y; Nagaoka M
    J Phys Chem B; 2024 Mar; 128(12):2853-2863. PubMed ID: 38488160
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of deoxyhemoglobin Cowtown [His HC3(146) beta----Leu]: origin of the alkaline Bohr effect and electrostatic interactions in hemoglobin.
    Perutz MF; Fermi G; Shih TB
    Proc Natl Acad Sci U S A; 1984 Aug; 81(15):4781-4. PubMed ID: 6589624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High pressure NMR studies of hemoproteins. The effect of pressure on the tertiary and quaternary structures of human adult ferrous hemoglobin.
    Morishima I; Hara M
    J Biol Chem; 1983 Dec; 258(23):14428-32. PubMed ID: 6643493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton nuclear magnetic resonance hyperfine shifts as indicators of tertiary structural changes accompanying the Bohr effect in monomeric insect hemoglobins.
    La Mar GN; Overkamp M; Sick H; Gersonde K
    Biochemistry; 1978 Jan; 17(2):352-61. PubMed ID: 23147
    [No Abstract]   [Full Text] [Related]  

  • 38. Proton nuclear magnetic resonance studies of hemoglobin.
    Ho C; Perussi JR
    Methods Enzymol; 1994; 232():97-139. PubMed ID: 8057888
    [No Abstract]   [Full Text] [Related]  

  • 39. The binding of chloride ions to ligated and unligated human hemoglobin and its influence on the Bohr effect.
    van Beek GG; Zuiderweg ER; de Bruin SH
    Eur J Biochem; 1979 Sep; 99(2):379-83. PubMed ID: 40792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The alkaline Bohr effect: regulation of O2 binding with triliganded hemoglobin Hb(O2)3].
    Dzhagarov BM; Kruk NN
    Biofizika; 1996; 41(3):606-12. PubMed ID: 8924460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.