These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 4515942)

  • 1. Lanthanide ion-induced isotropic shifts and broadening for nuclear magnetic resonance structural analysis of model membranes.
    Andrews SB; Faller JW; Gilliam JM; Barrnett RJ
    Proc Natl Acad Sci U S A; 1973 Jun; 70(6):1814-8. PubMed ID: 4515942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction of lanthanide and calcium salts with phospholipid bilayer vesicles: the validity of the nuclear magnetic resonance method for determination of vesicle bilayer phospholipid surface ratios.
    Hutton WC; Yeagle PL; Martin RB
    Chem Phys Lipids; 1977 Jul; 19(3):255-65. PubMed ID: 890868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel chelate-induced magnetic alignment of biological membranes.
    Prosser RS; Volkov VB; Shiyanovskaya IV
    Biophys J; 1998 Nov; 75(5):2163-9. PubMed ID: 9788910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid state 13C NMR of unlabeled phosphatidylcholine bilayers: spectral assignments and measurement of carbon-phosphorus dipolar couplings and 13C chemical shift anisotropies.
    Sanders CR
    Biophys J; 1993 Jan; 64(1):171-81. PubMed ID: 8431541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of structural defects in sonicated phospholipid vesicles on fusion and ion permeability.
    Lawaczeck R; Kainosho M; Girardet J; Chan SI
    Nature; 1975 Aug; 256(5518):584-6. PubMed ID: 1165776
    [No Abstract]   [Full Text] [Related]  

  • 6. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin.
    Lee L; Sykes BD
    Biophys J; 1980 Oct; 32(1):193-210. PubMed ID: 7248448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of molecular halothane in phospholipid bilayer model nerve membranes.
    Trudell JR; Hubbell WL
    Anesthesiology; 1976 Mar; 44(3):202-5. PubMed ID: 1267886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions.
    Ikegami T; Verdier L; Sakhaii P; Grimme S; Pescatore B; Saxena K; Fiebig KM; Griesinger C
    J Biomol NMR; 2004 Jul; 29(3):339-49. PubMed ID: 15213432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the nanoparticle-coating monolayer with NMR pseudocontact shifts.
    Guarino G; Rastrelli F; Mancin F
    Chem Commun (Camb); 2012 Feb; 48(10):1523-5. PubMed ID: 21960018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid bilayer tethered inside a nanoporous support: a solid-state nuclear magnetic resonance investigation.
    Wattraint O; Arnold A; Auger M; Bourdillon C; Sarazin C
    Anal Biochem; 2005 Jan; 336(2):253-61. PubMed ID: 15620890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of pseudocontact shifts in proteins with lanthanides using small "clickable" nitrilotriacetic acid and iminodiacetic acid tags.
    Loh CT; Graham B; Abdelkader EH; Tuck KL; Otting G
    Chemistry; 2015 Mar; 21(13):5084-92. PubMed ID: 25676727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct spectroscopic observation of inner and outer hydrocarbon chains of lipid bilayer vesicles.
    Longmuir KJ; Dahlquist FW
    Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2716-9. PubMed ID: 1066684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 1H nuclear magnetic resonance studies of ytterbium-substituted porcine intestinal calcium-binding protein.
    Shelling JG; Hofmann T; Sykes BD
    Can J Biochem Cell Biol; 1985 Sep; 63(9):992-7. PubMed ID: 4075233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined quantitative and mechanistic study of drug-membrane interactions using a novel 2H NMR approach.
    Middleton DA; Reid DG; Watts A
    J Pharm Sci; 2004 Feb; 93(2):507-14. PubMed ID: 14705206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 15N-1H Residual dipolar coupling analysis of native and alkaline-K79A Saccharomyces cerevisiae cytochrome c.
    Assfalg M; Bertini I; Turano P; Mauk AG; Winkler JR; Gray HB
    Biophys J; 2003 Jun; 84(6):3917-23. PubMed ID: 12770897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific labelling of proteins with a rigid lanthanide-binding tag.
    Su XC; Huber T; Dixon NE; Otting G
    Chembiochem; 2006 Oct; 7(10):1599-604. PubMed ID: 16927254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton-enhanced 13C nuclear magnetic resonance of lipids and biomembranes.
    Urbina J; Waugh JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5062-7. PubMed ID: 4531036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative determination of mononucleotide conformations in solution using lanthanide ion shift and broadenine NMR probes.
    Barry CD; North AC; Glasel JA; Williams RJ; Xavier AV
    Nature; 1971 Jul; 232(5308):236-45. PubMed ID: 4937076
    [No Abstract]   [Full Text] [Related]  

  • 19. Sequence-specific assignment of methyl groups from the neuronal SNARE complex using lanthanide-induced pseudocontact shifts.
    Pan YZ; Quade B; Brewer KD; Szabo M; Swarbrick JD; Graham B; Rizo J
    J Biomol NMR; 2016 Dec; 66(4):281-293. PubMed ID: 27988858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lanthanide complexes as nuclear magnetic resonance structural probes: paramagnetic anisotropy of shift reagent adducts.
    Horrocks WD; Sipe JP
    Science; 1972 Sep; 177(4053):994-6. PubMed ID: 17788812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.