These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 4516204)

  • 1. A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of circadian system of Drosophila pseudoobscura.
    Pittendrigh CS; Caldarola PC; Cosbey ES
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2037-41. PubMed ID: 4516204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy water slows the Gonyaulax clock: a test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature.
    McDaniel M; Sulzman FM; Hastings JW
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4389-91. PubMed ID: 4530989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature.
    Caldarola PC; Pittendrigh CS
    Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4386-8. PubMed ID: 4530988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the very rapid enhancement by D2O of the temperature-tolerance of adult Drosophila.
    Pittendrigh CS; Cosbey ES
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):540-3. PubMed ID: 4521820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature sensitivity of circadian clocks is conserved across Drosophila species melanogaster, malerkotliana and ananassae.
    Prabhakaran PM; Sheeba V
    Chronobiol Int; 2014 Nov; 31(9):1008-16. PubMed ID: 25051431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between the intensity of light phases and the extent of phase shifts of the circadian rhythm in the eclosion rate of Drosophila pseudoobscura.
    Chandrashekaran MK; Loher W
    J Exp Zool; 1969 Oct; 172(2):147-52. PubMed ID: 5372004
    [No Abstract]   [Full Text] [Related]  

  • 7. Circadian systems, II. The oscillation in the individual Drosophila pupa; its independence of developmental stage.
    Skopik SD; Pittendrigh CS
    Proc Natl Acad Sci U S A; 1967 Nov; 58(5):1862-9. PubMed ID: 5237488
    [No Abstract]   [Full Text] [Related]  

  • 8. Light at night alters the parameters of the eclosion rhythm in a tropical fruit fly, Drosophila jambulina.
    Thakurdas P; Sharma S; Vanlalhriatpuia K; Sinam B; Chib M; Shivagaje A; Joshi D
    Chronobiol Int; 2009 Dec; 26(8):1575-86. PubMed ID: 20030541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics and molecular analysis of circadian rhythms.
    Dunlap JC
    Annu Rev Genet; 1996; 30():579-601. PubMed ID: 8982466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A temperature-compensated model for circadian rhythms that can be entrained by temperature cycles.
    Takeuchi T; Hinohara T; Kurosawa G; Uchida K
    J Theor Biol; 2007 May; 246(1):195-204. PubMed ID: 17275853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature can entrain egg laying rhythm of Drosophila but may not be a stronger zeitgeber than light.
    Kannan NN; Reveendran R; Hari Dass S; Manjunatha T; Sharma VK
    J Insect Physiol; 2012 Feb; 58(2):245-55. PubMed ID: 22133310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic dissection of the Drosophila circadian system.
    Konopka RJ
    Fed Proc; 1979 Nov; 38(12):2602-5. PubMed ID: 574095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional Contributions of Strong and Weak Cellular Oscillators to Synchrony and Light-shifted Phase Dynamics.
    Roberts L; Leise TL; Welsh DK; Holmes TC
    J Biol Rhythms; 2016 Aug; 31(4):337-51. PubMed ID: 27221103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-compensated chemical reactions.
    Rajan K; Abbott LF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):022902. PubMed ID: 17358384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of deuterium oxide and temperature on heart rate in Drosophila melanogaster.
    White LA; Ringo JM; Dowse HB
    J Comp Physiol B; 1992; 162(3):278-83. PubMed ID: 1319433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase coupling of a circadian neuropeptide with rest/activity rhythms detected using a membrane-tethered spider toxin.
    Wu Y; Cao G; Pavlicek B; Luo X; Nitabach MN
    PLoS Biol; 2008 Nov; 6(11):e273. PubMed ID: 18986214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong (type 0) phase resetting of activity-rest rhythm in fruit flies, Drosophila melanogaster, at low temperature.
    Varma V; Mukherjee N; Kannan NN; Sharma VK
    J Biol Rhythms; 2013 Dec; 28(6):380-9. PubMed ID: 24336416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further evidence that the circadian clock in Drosophila is a population of coupled ultradian oscillators.
    Dowse HB; Ringo JM
    J Biol Rhythms; 1987; 2(1):65-76. PubMed ID: 2979652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of D2O on the circadian rhythm of petal movement of Kalanchoe.
    Maurer A; Engelmann W
    Z Naturforsch C Biosci; 1974; 29(1):36-8. PubMed ID: 4276382
    [No Abstract]   [Full Text] [Related]  

  • 20. General homeostasis of the frequency of circadian oscillations.
    Pittendrigh CS; Caldarola PC
    Proc Natl Acad Sci U S A; 1973 Sep; 70(9):2697-701. PubMed ID: 4517682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.