These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 4519462)

  • 1. Dosimetry at interfaces. Theoretical analysis and measurements by means of thermoluminescent LiF at plane interfaces between a low Z-material and Al, Cu, Sn or Pb irradiated with 100 to 200 kV roentgen radiation.
    Carlsson GA
    Acta Radiol Suppl; 1973; 332():1-64. PubMed ID: 4519462
    [No Abstract]   [Full Text] [Related]  

  • 2. On the roles of dopants in LiF:Mg,Cu,Si thermoluminescent material.
    Tang K; Cui H; Zhu H; Liu Z; Fan H
    Radiat Prot Dosimetry; 2013 Jul; 155(2):141-5. PubMed ID: 23313867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of LiF:Ti thermoluminescence dosimeter material.
    Aypar A; Demirtaş H
    Int J Appl Radiat Isot; 1985 Jul; 36(7):566-8. PubMed ID: 4066063
    [No Abstract]   [Full Text] [Related]  

  • 4. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions.
    Moscovitch M; St John TJ; Cassata JR; Blake PK; Rotunda JE; Ramlo M; Velbeck KJ; Luo LZ
    Radiat Prot Dosimetry; 2006; 119(1-4):248-54. PubMed ID: 16835277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy response of a two-dimensional sheet-type LiF:Mg,Cu,P TL dosemeter to photons.
    Konnai A; Nariyama N; Ohnishi S; Odano N; Ozasa N; Ishikawa Y
    Radiat Prot Dosimetry; 2006; 120(1-4):125-8. PubMed ID: 16614093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy response of lithium borate thermoluminescent dosimeters.
    Thompson JJ; Ziemer PL
    Health Phys; 1972 Apr; 22(4):399-401. PubMed ID: 5045204
    [No Abstract]   [Full Text] [Related]  

  • 7. Accuracy of megavolt radiation dosimetry using thermoluminescent lithium fluoride.
    Rudén BI; Bengtsson LG
    Acta Radiol Ther Phys Biol; 1977 Apr; 16(2):157-76. PubMed ID: 405844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explanation of supralinearity in thermoluminescence of LiF in terms of the interacting track model.
    Dobson PN; Midkiff AA
    Health Phys; 1970 May; 18(5):571-3. PubMed ID: 5513086
    [No Abstract]   [Full Text] [Related]  

  • 9. On the roles of the dopants in LiF: Mg,Cu,Na,Si thermoluminescent material.
    Lee JI; Kim JL; Chang SY; Chung KS; Choe HS
    Radiat Prot Dosimetry; 2005; 115(1-4):340-4. PubMed ID: 16381743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of cavity theories to high-energy response to LiF dosimeters.
    Ogunleye OT; Fregene AO
    Radiat Res; 1981 Aug; 87(2):251-64. PubMed ID: 7267994
    [No Abstract]   [Full Text] [Related]  

  • 11. A comparative study on the susceptibility of LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H) to spurious signals in thermoluminescence dosimetry.
    Al-Haj A; Lagarde C; Mahyoub F
    Radiat Prot Dosimetry; 2007; 125(1-4):399-402. PubMed ID: 17223633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transit dose in extracorporeal blood irradiation devices measured by means of thermoluminescence.
    Botter-Jensen L; Christensen P
    Acta Radiol Suppl; 1972; 313():247-52. PubMed ID: 4374026
    [No Abstract]   [Full Text] [Related]  

  • 13. The applicability of the PTTL dose re-analysis method to the Harshaw LiF:Mg,Cu,P material.
    Moscovitch M; Benevides L; Romanyukha A; Hull F; Duffy M; Voss S; Velbeck KJ; Nita I; Rotunda JE
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):161-4. PubMed ID: 21450701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method of thermoluminescent measurement of radiation doses from micrograys up to a megagray with a single LiF:Mg,Cu,P detector.
    Obryk B; Bilski P; Olko P
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):543-7. PubMed ID: 21051430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy response of different types of RADOS personal dosemeters with MTS-N (LiF:Mg,Ti) and MCP-N (LiF:Mg,Cu,P) TL detectors.
    Obryk B; Hranitzky C; Stadtmann H; Budzanowski M; Olko P
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):211-4. PubMed ID: 21227957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental studies and mathematical approximation of deep dosage distribution of fast electrons. 1].
    Czaikowski PM
    Strahlentherapie; 1972 Feb; 143(2):186-93. PubMed ID: 4625888
    [No Abstract]   [Full Text] [Related]  

  • 17. Dose to the shielded thymic region of irradiated mouse cadavers.
    Bojtor I; Nikl I; Hiesche KD
    Acta Radiol Ther Phys Biol; 1977 Aug; 16(4):361-8. PubMed ID: 930640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of radiation dose distribution in a pond habitat by lithium fluoride dosimetry.
    Guthrie JE; Scott AG
    Can J Zool; 1969 Jan; 47(1):17-20. PubMed ID: 5406767
    [No Abstract]   [Full Text] [Related]  

  • 19. Thermoluminescence in LiF induced by monoenergetic, parallel beam, 13.8- and 81.0-meV diffracted neutrons. The intrinsic TL response per absorbed neutron.
    Horowitz YS; Shahar BB; Mordechai S; Dubi A
    Radiat Res; 1977 Mar; 69(3):402-16. PubMed ID: 847093
    [No Abstract]   [Full Text] [Related]  

  • 20. UV-induced bleaching of deep traps in Harshaw TLD LiF:Mg,Cu,P and LiF:Mg,Ti.
    Benevides L; Voss S; Nita I; Rotunda J; Velbeck K; Luo LZ; Moscovitch M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):199-201. PubMed ID: 21310735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.