These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 451992)

  • 1. The brain of the horseshoe crab (Limulus polyphemus). III. Cellular and synaptic organization of the corpora pedunculata.
    Fahrenbach WH
    Tissue Cell; 1979; 11(1):163-200. PubMed ID: 451992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The brain of the horseshoe crab (Limulus polyphemus). II. Architecture of the corpora penduculata.
    Fahrenbach WH
    Tissue Cell; 1977; 9(1):157-66. PubMed ID: 898173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic organization of the mushroom body calyx in Drosophila melanogaster.
    Yasuyama K; Meinertzhagen IA; Schürmann FW
    J Comp Neurol; 2002 Apr; 445(3):211-26. PubMed ID: 11920702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical circuitry of lateral inhibition in the eye of the horseshoe crab, Limulus polyphemus.
    Fahrenbach WH
    Proc R Soc Lond B Biol Sci; 1985 Aug; 225(1239):219-49. PubMed ID: 2864695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural identification of synaptic terminals from the axon of type 3 interneurons in the cat lateral geniculate nucleus.
    Montero VM
    J Comp Neurol; 1987 Oct; 264(2):268-83. PubMed ID: 3680632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendritic and somatic appendages of identified rubrospinal neurons of the cat.
    Wilson CJ; Murakami F; Katsumaru H; Tsukahara N
    Neuroscience; 1987 Jul; 22(1):113-30. PubMed ID: 2819771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies.
    Strausfeld NJ; Li Y
    J Comp Neurol; 1999 Jul; 409(4):626-46. PubMed ID: 10376744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative ultrastructure of synapses on functionally identified primary afferent neurons in the cat trigeminal mesencephalic nucleus.
    Honma S; Moritani M; Zhang LF; Lu LQ; Yoshida A; Appenteng K; Shigenaga Y
    Exp Brain Res; 2001 Mar; 137(2):150-62. PubMed ID: 11315543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A light and electron microscopic study of the inferior olivary nucleus of the squirrel monkey, Saimiri sciureus.
    Rutherford JG; Gwyn DG
    J Comp Neurol; 1980 Jan; 189(1):127-55. PubMed ID: 6766143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic organization of the dorsal lateral geniculate nucleus in the adult hamster. An electron microscope study using degeneration and horseradish peroxidase tracing techniques.
    So KF; Campbell G; Lieberman AR
    Anat Embryol (Berl); 1985; 171(2):223-34. PubMed ID: 3985371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic observation of synaptic connections of jaw-muscle spindle and periodontal afferent terminals in the trigeminal motor and supratrigeminal nuclei in the cat.
    Bae YC; Nakagawa S; Yasuda K; Yabuta NH; Yoshida A; Pil PK; Moritani M; Chen K; Nagase Y; Takemura M; Shigenaga Y
    J Comp Neurol; 1996 Oct; 374(3):421-35. PubMed ID: 8906508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron.
    Kimmel CB; Sessions SK; Kimmel RJ
    J Comp Neurol; 1981 May; 198(1):101-20. PubMed ID: 7229136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. II. An ultrastructural analysis.
    Kalia M; Richter D
    J Comp Neurol; 1985 Nov; 241(4):521-35. PubMed ID: 4078045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electron microscopic study of primary afferent terminals from slowly adapting type I receptors in the cat.
    Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Yang G; Egger MD
    J Comp Neurol; 1983 Dec; 221(4):466-81. PubMed ID: 6662983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural observations of synaptic connections of vibrissa afferent terminals in cat principal sensory nucleus and morphometry of related synaptic elements.
    Nakagawa S; Kurata S; Yoshida A; Nagase Y; Moritani M; Takemura M; Bae YC; Shigenaga Y
    J Comp Neurol; 1997 Dec; 389(1):12-33. PubMed ID: 9390757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical evidence for cholinergic involvement in the Limulus brain.
    Ivy MT; Townsel JG
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1987; 86(1):103-10. PubMed ID: 2881703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thalamocortical projection in Pseudemys turtles: a quantitative electron microscopic study.
    Smith LM; Ebner FF; Colonnier M
    J Comp Neurol; 1980 Apr; 190(3):445-61. PubMed ID: 7391267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topography of four classes of Kenyon cells in the mushroom bodies of the cockroach.
    Mizunami M; Iwasaki M; Okada R; Nishikawa M
    J Comp Neurol; 1998 Sep; 399(2):162-75. PubMed ID: 9721901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers.
    Réthelyi M; Light AR; Perl ER
    J Comp Neurol; 1982 Jun; 207(4):381-93. PubMed ID: 6288776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ramification pattern and ultrastructural characteristics of the serotonin-immunoreactive neuron in the antennal lobe of the moth Manduca sexta: a laser scanning confocal and electron microscopic study.
    Sun XJ; Tolbert LP; Hildebrand JG
    J Comp Neurol; 1993 Dec; 338(1):5-16. PubMed ID: 8300899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.