These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 4524621)
1. Electron transport to clostridial rubredoxin: kinetics of the reduction by hexaammineruthenium(II), vanadous and chromous ions. Jacks CA; Bennett LE; Raymond WN; Lovenberg W Proc Natl Acad Sci U S A; 1974 Apr; 71(4):1118-22. PubMed ID: 4524621 [TBL] [Abstract][Full Text] [Related]
2. Kinetic studies of reduction of a 1:1 cytochrome c-flavodoxin complex by free flavin semiquinones and rubredoxin. Hazzard JT; Cusanovich MA; Tainer JA; Getzoff ED; Tollin G Biochemistry; 1986 Jun; 25(11):3318-28. PubMed ID: 3015203 [TBL] [Abstract][Full Text] [Related]
3. A role for rubredoxin in oxidative stress protection in Desulfovibrio vulgaris: catalytic electron transfer to rubrerythrin and two-iron superoxide reductase. Coulter ED; Kurtz DM Arch Biochem Biophys; 2001 Oct; 394(1):76-86. PubMed ID: 11566030 [TBL] [Abstract][Full Text] [Related]
4. Nuclear-magnetic-resonance determination of the electron self-exchange rate constant of Clostridium pasteurianum rubredoxin. Gaillard J; Zhuang-Jackson H; Moulis JM Eur J Biochem; 1996 Jun; 238(2):346-9. PubMed ID: 8681944 [TBL] [Abstract][Full Text] [Related]
5. Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. Lee HJ; Basran J; Scrutton NS Biochemistry; 1998 Nov; 37(44):15513-22. PubMed ID: 9799514 [TBL] [Abstract][Full Text] [Related]
6. Characterization of ferredoxin, flavodoxin, and rubredoxin from Clostridium formicoaceticum grown in media with high and low iron contents. Ragsdale SW; Ljungdahl LG J Bacteriol; 1984 Jan; 157(1):1-6. PubMed ID: 6690418 [TBL] [Abstract][Full Text] [Related]
7. The unique hydrogen bonded water in the reduced form of Clostridium pasteurianum rubredoxin and its possible role in electron transfer. Park IY; Youn B; Harley JL; Eidsness MK; Smith E; Ichiye T; Kang C J Biol Inorg Chem; 2004 Jun; 9(4):423-8. PubMed ID: 15067525 [TBL] [Abstract][Full Text] [Related]
8. Purification and properties of ferredoxin and rubredoxin from Butyribacterium methylotrophicum. Saeki K; Jain MK; Shen GJ; Prince RC; Zeikus JG J Bacteriol; 1989 Sep; 171(9):4736-41. PubMed ID: 2548997 [TBL] [Abstract][Full Text] [Related]
9. The iron-sulfur environment in rubredoxin. Bunker B; Stern EA Biophys J; 1977 Sep; 19(3):253-64. PubMed ID: 890038 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Yelle RB; Park NS; Ichiye T Proteins; 1995 Jun; 22(2):154-67. PubMed ID: 7567963 [TBL] [Abstract][Full Text] [Related]
11. Rubrerythrin from the hyperthermophilic archaeon Pyrococcus furiosus is a rubredoxin-dependent, iron-containing peroxidase. Weinberg MV; Jenney FE; Cui X; Adams MW J Bacteriol; 2004 Dec; 186(23):7888-95. PubMed ID: 15547260 [TBL] [Abstract][Full Text] [Related]
12. Redox thermodynamics of mutant forms of the rubredoxin from Clostridiumpasteurianum: identification of a stable Fe(III)(S-Cys)3(OH) centre in the C6S mutant. Xiao Z; Gardner AR; Cross M; Maes EM; Czernuszewicz RS; Sola M; Wedd AG J Biol Inorg Chem; 2001 Jun; 6(5-6):638-49. PubMed ID: 11472027 [TBL] [Abstract][Full Text] [Related]
13. Synthetic analogs of active sites of iron-sulfur proteins: bis (o-xylyldithiolato) ferrate (III) monoanion, a structurally unconstrained model for the rubredoxin Fe-S4 unit. Lane RW; Ibers JA; Frankel RB; Holm RH Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2868-72. PubMed ID: 1059080 [TBL] [Abstract][Full Text] [Related]
14. Thermal stability of the [Fe(SCys)(4)] site in Clostridium pasteurianum rubredoxin: contributions of the local environment and Cys ligand protonation. Bonomi F; Burden AE; Eidsness MK; Fessas D; Iametti S; Kurtz DM; Mazzini S; Scott RA; Zeng Q J Biol Inorg Chem; 2002 Apr; 7(4-5):427-36. PubMed ID: 11941500 [TBL] [Abstract][Full Text] [Related]
15. Identification of inner- and outer-sphere reaction pathways in the reduction of iron-sulphur proteins with a chromium (II)-macrocycle complex. Adzamli IK; Henderson RA; Ong H; Sykes AG; Cammack R; Rao KK Biochem Biophys Res Commun; 1982 Apr; 105(4):1582-9. PubMed ID: 7103972 [No Abstract] [Full Text] [Related]
16. Preparation and properties of immobilized rubredoxin. May W; Kuo JY J Biol Chem; 1977 Apr; 252(7):2390-5. PubMed ID: 849934 [TBL] [Abstract][Full Text] [Related]
17. Protein control of electron transfer rates via polarization: molecular dynamics studies of rubredoxin. Dolan EA; Yelle RB; Beck BW; Fischer JT; Ichiye T Biophys J; 2004 Apr; 86(4):2030-6. PubMed ID: 15041645 [TBL] [Abstract][Full Text] [Related]
18. Superoxide reductase: different interaction modes with its two redox partners. Almeida RM; Turano P; Moura I; Moura JJ; Pauleta SR Chembiochem; 2013 Sep; 14(14):1858-66. PubMed ID: 24038730 [TBL] [Abstract][Full Text] [Related]
19. Leucine 41 is a gate for water entry in the reduction of Clostridium pasteurianum rubredoxin. Min T; Ergenekan CE; Eidsness MK; Ichiye T; Kang C Protein Sci; 2001 Mar; 10(3):613-21. PubMed ID: 11344329 [TBL] [Abstract][Full Text] [Related]
20. Overexpression and purification of Treponema pallidum rubredoxin; kinetic evidence for a superoxide-mediated electron transfer with the superoxide reductase neelaredoxin. Auchère F; Sikkink R; Cordas C; Raleiras P; Tavares P; Moura I; Moura JJ J Biol Inorg Chem; 2004 Oct; 9(7):839-49. PubMed ID: 15328557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]