These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 4524621)
61. Reaction of tris(bipyridine)ruthenium(III) with hydroxide and its application in a solar energy storage system. Creutz C; Sutin N Proc Natl Acad Sci U S A; 1975 Aug; 72(8):2858-62. PubMed ID: 16592265 [TBL] [Abstract][Full Text] [Related]
62. Electron Transfer Reactivity of the Aqueous Iron(IV)-Oxo Complex. Outer-Sphere vs Proton-Coupled Electron Transfer. Bataineh H; Pestovsky O; Bakac A Inorg Chem; 2016 Jul; 55(13):6719-24. PubMed ID: 27320290 [TBL] [Abstract][Full Text] [Related]
63. Kinetic studies on reactions of iron-sulphur proteins. Oxidation of the reduced form of Spirulina platensis [2Fe-2S] ferredoxin with inorganic complexes. Adzamli IK; Petrou A; Sykes AG; Rao KK; Hall DO Biochem J; 1983 Apr; 211(1):219-26. PubMed ID: 6409090 [TBL] [Abstract][Full Text] [Related]
64. Effect of serinate ligation at each of the iron sites of the [Fe4S4] cluster of Pyrococcus furiosus ferredoxin on the redox, spectroscopic, and biological properties. Brereton PS; Duderstadt RE; Staples CR; Johnson MK; Adams MW Biochemistry; 1999 Aug; 38(32):10594-605. PubMed ID: 10441157 [TBL] [Abstract][Full Text] [Related]
65. Theoretical studies of the oxidized and reduced states of a model for the active site of rubredoxin. Bair RA; Goddard WA J Am Chem Soc; 1977 May; 99(10):3505-7. PubMed ID: 853189 [No Abstract] [Full Text] [Related]
66. Characterization of a mutated rubredoxin with a cysteine ligand of the iron replaced by serine. Meyer J; Gaillard J; Lutz M Biochem Biophys Res Commun; 1995 Jul; 212(3):827-33. PubMed ID: 7626117 [TBL] [Abstract][Full Text] [Related]
67. Chemical shift assignment of the intrinsically disordered N-terminus and the rubredoxin domain in the folded metal bound and unfolded oxidized state of mycobacterial protein kinase G. Wittwer M; Dames SA Biomol NMR Assign; 2016 Oct; 10(2):401-6. PubMed ID: 27632081 [TBL] [Abstract][Full Text] [Related]
68. The role of backbone stability near Ala44 in the high reduction potential class of rubredoxins. Tan ML; Kang C; Ichiye T Proteins; 2006 Mar; 62(3):708-14. PubMed ID: 16362979 [TBL] [Abstract][Full Text] [Related]
69. The redox potentials of the two-iron plant and algal ferredoxins. An electrostatic model. Kassner RJ; Yang W Biochem J; 1973 Jun; 133(2):283-7. PubMed ID: 4723776 [TBL] [Abstract][Full Text] [Related]
70. On the role of superoxide in reactions catalyzed by rubredoxin of Pseudomonas oleovorans. May SW; Abbott BJ; Felix A Biochem Biophys Res Commun; 1973 Oct; 54(4):1540-5. PubMed ID: 4148231 [No Abstract] [Full Text] [Related]
71. Assignment of 1H, 13C, and 15N signals of reduced Clostridium pasteurianum rubredoxin: oxidation state-dependent changes in chemical shifts and relaxation rates. Prantner AM; Volkman BF; Wilkens SJ; Xia B; Markley JL J Biomol NMR; 1997 Dec; 10(4):411-2. PubMed ID: 9460246 [No Abstract] [Full Text] [Related]
72. Intramolecular Electron Transfer Governs Photoinduced Hydrogen Evolution by Nickel-Substituted Rubredoxin: Resolving Elementary Steps in Solar Fuel Generation. Marguet SC; Stevenson MJ; Shafaat HS J Phys Chem B; 2019 Nov; 123(46):9792-9800. PubMed ID: 31608640 [TBL] [Abstract][Full Text] [Related]
73. Fluorescence X-ray adsorption studies of rubredoxin and its model compounds. Shulman RG; Eisenberger P; Teo BK; Kincaid BM; Brown GS J Mol Biol; 1978 Sep; 124(2):305-21. PubMed ID: 712839 [No Abstract] [Full Text] [Related]
74. [Quantitative immunological method for determining rubredoxin in crude extracts of Acinetobacter calcoaceticus]. Claus R; Hädge D; Asperger O; Fiebig H; Kleber HP Z Allg Mikrobiol; 1980; 20(2):95-103. PubMed ID: 6246689 [No Abstract] [Full Text] [Related]
75. Crystallographic refinement of rubredoxin at 1 x 2 A degrees resolution. Watenpaugh KD; Sieker LC; Jensen LH J Mol Biol; 1980 Apr; 138(3):615-33. PubMed ID: 7411618 [No Abstract] [Full Text] [Related]
77. Letter: The crystal and molecular structures of [(C6H5)4P]2Fe(S2C4O2)2 and [(C6H5)4P]2Fe(SC6H5)4, a structural analogue of reduced rubredoxin. Coucouvanis D; Swenson D; Baenziger NC; Holah DG; Kostikas A; Simopoulos A; Petrouleas V J Am Chem Soc; 1976 Sep; 98(18):5721-3. PubMed ID: 956577 [No Abstract] [Full Text] [Related]
78. Synthetic analogues of the active sites of iron-sulfur proteins. 14. Synthesis, properties, and structures of bis(o-xylyl-alpha,alpha'-dithiolato)ferrate(II, III) anions, analogues of oxidized and reduced rubredoxin sites. Lane RW; Ibers JA; Frankel RB; Papaefthymiou GC; Holm RH J Am Chem Soc; 1977 Jan; 99(1):84-98. PubMed ID: 830690 [No Abstract] [Full Text] [Related]
79. Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Lovenberg W; Sobel BE Proc Natl Acad Sci U S A; 1965 Jul; 54(1):193-9. PubMed ID: 5216351 [No Abstract] [Full Text] [Related]