These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 4526215)

  • 1. Sulfite reductase activity in extracts of various photosynthetic bacteria.
    Peck HD; Tedro S; Kamen MD
    Proc Natl Acad Sci U S A; 1974 Jun; 71(6):2404-6. PubMed ID: 4526215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatium sulfite reductase. I. Characterization of thiosulfate-forming activity at the cell extract level.
    Kobayashi K; Katsura E; Kondo T; Ishimoto M
    J Biochem; 1978 Nov; 84(5):1209-15. PubMed ID: 730752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survey of the photosynthetic bacteria for rhodanese (thiosulfate: cyanide sulfur transferase) activity.
    Yoch DC; Lindstrom ES
    J Bacteriol; 1971 May; 106(2):700-1. PubMed ID: 5573738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical studies on sulfate-reducing bacteria. XIV. Enzyme levels of adenylylsulfate reductase, inorganic pyrophosphatase, sulfite reductase, hydrogenase, and adenosine triphosphatase in cells grown on sulfate, sulfite, and thiosulfate.
    Kobayashi K; Morisawa Y; Ishituka T; Ishimoto M
    J Biochem; 1975 Nov; 78(5):1079-85. PubMed ID: 175050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular diversity of the ribulose-1,5-diphosphate carboxylase from photosynthetic microorganisms.
    Spomer GG
    Science; 1968 Aug; 161(3840):482-5. PubMed ID: 5659689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insertional gene inactivation in a phototrophic sulphur bacterium: APS-reductase-deficient mutants of Chromatium vinosum.
    Dahl C
    Microbiology (Reading); 1996 Dec; 142 ( Pt 12)():3363-72. PubMed ID: 9004500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a thermolabile sulfite reductase from Salmonella pullorum.
    Hoeksema WD; Schoenhard DE
    J Bacteriol; 1971 Oct; 108(1):154-8. PubMed ID: 5122801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membranes of photosynthetic bacteria.
    Oelze J; Drews G
    Biochim Biophys Acta; 1972 Apr; 265(2):209-39. PubMed ID: 4557023
    [No Abstract]   [Full Text] [Related]  

  • 9. Electron paramagnetic resonance studies of ferric cytochrome c' from photosynthetic bacteria.
    Fujii S; Yoshimura T; Kamada H; Yamaguchi K; Suzuki S; Shidara S; Takakuwa S
    Biochim Biophys Acta; 1995 Sep; 1251(2):161-9. PubMed ID: 7669805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase.
    Hallenbeck PC; Clark MA; Barrett EL
    J Bacteriol; 1989 Jun; 171(6):3008-15. PubMed ID: 2656637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of sulfite oxidoreductase and sulfite reductase in improving desulfurization by Rhodococcus erythropolis.
    Aggarwal S; Karimi IA; Kilbane Ii JJ; Lee DY
    Mol Biosyst; 2012 Oct; 8(10):2724-32. PubMed ID: 22832889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial sulfite respiration.
    Simon J; Kroneck PM
    Adv Microb Physiol; 2013; 62():45-117. PubMed ID: 23481335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrous oxide reduction by members of the family Rhodospirillaceae and the nitrous oxide reductase of Rhodopseudomonas capsulata.
    McEwan AG; Greenfield AJ; Wetzstein HG; Jackson JB; Ferguson SJ
    J Bacteriol; 1985 Nov; 164(2):823-30. PubMed ID: 2997133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfate-reducing pathway in Escherichia coli involving bound intermediates.
    Tsang ML; Schiff JA
    J Bacteriol; 1976 Mar; 125(3):923-33. PubMed ID: 3497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable isotope fractionation by Clostridium pasteurianum. 2. Regulation of sulfite reductases by sulfur amino acids and their influence on sulfur isotope fractionation during SO32- and SO42- reduction.
    Laishley EJ; Krouse HR
    Can J Microbiol; 1978 Jun; 24(6):716-24. PubMed ID: 667738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Formation of catalase by photosynthesizing bacteria].
    Uspenskaia VE; Rodova NA; Kondrat'eva EN
    Mikrobiologiia; 1971; 40(3):455-60. PubMed ID: 5567626
    [No Abstract]   [Full Text] [Related]  

  • 17. [Ratio of metals during changes in the metabolism of photosynthetic bacteria].
    Udel'nova TM; Chudina VI; Chernogorova SM; Osnitskaia LK; Boĭchenko EA
    Mikrobiologiia; 1980; 49(1):9-13. PubMed ID: 7393002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray crystal structure of a mutant assimilatory nitrite reductase that shows sulfite reductase-like activity.
    Nakano S; Takahashi M; Sakamoto A; Morikawa H; Katayanagi K
    Chem Biodivers; 2012 Sep; 9(9):1989-99. PubMed ID: 22976986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling factors ATPases from photosynthetic bacteria.
    Melandri BA; Melandri AB
    J Bioenerg; 1976 Apr; 8(2):109-19. PubMed ID: 134033
    [No Abstract]   [Full Text] [Related]  

  • 20. Siroheme as an active catalyst in sulfite reduction.
    Seki Y; Sogawa N; Ishimoto M
    J Biochem; 1981 Nov; 90(5):1487-92. PubMed ID: 7338517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.