These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 452917)
1. [Magnesium and the role it plays in biochemical transformations and muscle contraction]. Czerniakowska K Acta Physiol Pol; 1979; 30(18 Suppl):81-92. PubMed ID: 452917 [No Abstract] [Full Text] [Related]
3. Normal muscle energy metabolism. Kushmerick MJ Adv Exp Med Biol; 1984; 178():339-50. PubMed ID: 6542301 [No Abstract] [Full Text] [Related]
4. Muscle contraction. Through thick and thin. Chantler PD Nature; 1986 Aug 7-13; 322(6079):498-9. PubMed ID: 2942781 [No Abstract] [Full Text] [Related]
5. [Effect of physical training of different duration on oxidative phosphorylation in skeletal muscles of albino rats]. Samodanova GI Ukr Biokhim Zh; 1971; 43(2):190-4. PubMed ID: 5564626 [No Abstract] [Full Text] [Related]
6. [Effect of pangamic acid on oxidative phosphorylation in skeletal muscle mitochondria]. Lenkova RI Tsitologiia; 1969 Nov; 11(11):1427-33. PubMed ID: 4246090 [No Abstract] [Full Text] [Related]
7. A quantitative estimation of adenosine triphosphate released from human forearm muscle during sustained exercise. Forrester T J Physiol; 1972 Feb; 221(1):25P-26P. PubMed ID: 5016987 [No Abstract] [Full Text] [Related]
8. Myothermic, polarographic, and fluorometric data from mammalian muscles: correlations and an approach to a biochemical synthesis. Chapman JB; Gibbs CL; Loiselle DS Fed Proc; 1982 Feb; 41(2):176-84. PubMed ID: 7060743 [TBL] [Abstract][Full Text] [Related]
9. Effects and subcellular distribution of magnesium in smooth and striated muscle. Somlyo AP; Somlyo AV Fed Proc; 1981 Oct; 40(12):2667-71. PubMed ID: 7026293 [TBL] [Abstract][Full Text] [Related]
11. [Restitution processes following muscular activity at different temperatures]. Iakovlev NN; Krasnova AF; Lenkova RI; Samodanova GI; Chagovets NR Fiziol Zh SSSR Im I M Sechenova; 1971 Apr; 57(4):556-61. PubMed ID: 4327100 [No Abstract] [Full Text] [Related]
12. Ca2+ transport by mitochondria and its possible role in the cardiac contraction-relaxation cycle. Lehninger AL Circ Res; 1974 Sep; 35 Suppl 3():83-90. PubMed ID: 4606316 [No Abstract] [Full Text] [Related]
13. [Utilization of energy fuels in the myocardium and muscle during rest and activity]. Jéquier E; Ravussin E Journ Annu Diabetol Hotel Dieu; 1980 May; ():107-16. PubMed ID: 7401419 [No Abstract] [Full Text] [Related]
14. Exercise of normal muscle: biochemical effects. Herbison GJ; Gordon EE Arch Phys Med Rehabil; 1973 Sep; 54(9):409-15 passim. PubMed ID: 4354117 [No Abstract] [Full Text] [Related]
15. [Age characteristics in the metabolism of high-energy phosphate compounds in skeletal muscles during rest and work]. Frol'kis VV; Epshteĭn EV Vopr Med Khim; 1966; 12(3):248-53. PubMed ID: 6000890 [No Abstract] [Full Text] [Related]
16. The relation between maximum shortening velocity and the magnesium adenosine triphosphate concentration in frog skinned muscle fibres [proceedings]. Ferenczi MA; Goldman YE; Simmons RM J Physiol; 1979 Jul; 292():71P-72P. PubMed ID: 490408 [No Abstract] [Full Text] [Related]
17. Exercise metabolism: O 2 deficit, steady level O 2 uptake and O 2 uptake for recovery. Stainsby WN; Barclay JK Med Sci Sports; 1970; 2(4):177-81. PubMed ID: 5521271 [No Abstract] [Full Text] [Related]
18. [Creatine kinase system and muscle energy metabolism]. Chetverikova EP Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505 [No Abstract] [Full Text] [Related]
19. [Muscle metabolism during work of short duration]. Lehtonen A Duodecim; 1974; 90(7):447-54. PubMed ID: 4603697 [No Abstract] [Full Text] [Related]
20. [Energetics of muscular exercise]. Di Prampero PE J Physiol (Paris); 1972; 65():Suppl 1:51A+. PubMed ID: 4569815 [No Abstract] [Full Text] [Related] [Next] [New Search]