These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 4530695)
1. A kinetic study of the Na pump in red cells: its relevance to the mechanism of active transport. Garrahan PJ; Garay RP Ann N Y Acad Sci; 1974; 242(0):445-58. PubMed ID: 4530695 [No Abstract] [Full Text] [Related]
2. The kinetics of the Na+, K+-pump in goat red blood cells and the effect of an antibody. Sachs JR Ann N Y Acad Sci; 1974; 242(0):343-56. PubMed ID: 4530694 [No Abstract] [Full Text] [Related]
3. The uncoupled extrusion of Na+ through the Na+ pump. Lew VL; Hardy MA; Ellory JC Biochim Biophys Acta; 1973 Oct; 323(2):251-66. PubMed ID: 4752285 [No Abstract] [Full Text] [Related]
4. Active sodium and potassium transport in high potassium and low potassium sheep red cells. Hoffman PG; Tosteson DC J Gen Physiol; 1971 Oct; 58(4):438-66. PubMed ID: 5112660 [TBL] [Abstract][Full Text] [Related]
6. The ATP dependence of a ouabain-sensitive sodium efflux activated by external sodium, potassium and lithium in human red cells. Beaugé LA; Del Campillo E Biochim Biophys Acta; 1976 May; 433(3):547-54. PubMed ID: 1276192 [TBL] [Abstract][Full Text] [Related]
7. Ouabain binding to the sodium pump in plasma membranes isolated from ox brains. Whittam R; Chipperfield AR Biochim Biophys Acta; 1973 May; 307(3):563-77. PubMed ID: 4268889 [No Abstract] [Full Text] [Related]
8. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes. Cavieres JD; Ellory JC J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181 [TBL] [Abstract][Full Text] [Related]
9. pH dependence of rubidium influx in human red blood cells. Beaugé LA; Adragna N Biochim Biophys Acta; 1974 Jun; 352(3):441-7. PubMed ID: 4841674 [No Abstract] [Full Text] [Related]
10. The interaction of sodium and potassium with the sodium pump in red cells. Garay RP; Garrahan PJ J Physiol; 1973 Jun; 231(2):297-325. PubMed ID: 4720935 [TBL] [Abstract][Full Text] [Related]
11. The efflux of sodium from human red blood cells. Eilam Y; Stein WD Biochim Biophys Acta; 1973 Nov; 323(4):606-19. PubMed ID: 4761094 [No Abstract] [Full Text] [Related]
12. Effects of general anaesthetics on Na+ transport in human red cells. Halsey MJ; Smith EB; Wood TE Nature; 1970 Mar; 225(5238):1151-2. PubMed ID: 5418248 [No Abstract] [Full Text] [Related]
13. Examination of the competitive effect of alkali ions in the K+, Rb+ and Cs+ transport of rat erythrocytes. Györgyi S; Blaskó K Acta Biochim Biophys Acad Sci Hung; 1974; 9(1-2):97-105. PubMed ID: 4413344 [No Abstract] [Full Text] [Related]
14. Membrane ATP and the functional organization of the red cell Na:K pump. Hoffman JF; Proverbio F Ann N Y Acad Sci; 1974; 242(0):459-60. PubMed ID: 4279598 [No Abstract] [Full Text] [Related]
15. Lithium efflux through the Na/K pump in human erythrocytes. Dunham PB; Senyk O Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3099-103. PubMed ID: 268658 [TBL] [Abstract][Full Text] [Related]
16. Comparison of the side-dependent effects of Na and K on orthophosphate-, UTP-, and ATP-promoted ouabain binding to reconstituted human red blood cell ghosts. Bodemann HH; Hoffman JF J Gen Physiol; 1976 May; 67(5):527-45. PubMed ID: 1271041 [TBL] [Abstract][Full Text] [Related]
17. Altered membrane sodium transport and the presence of a plasma ouabain-like inhibitory factor in acute myeloid leukaemia. Mir MA; Bobinski H Clin Sci Mol Med; 1975 Mar; 48(3):213-8. PubMed ID: 1054305 [TBL] [Abstract][Full Text] [Related]
18. Reversibility and partial reactions of the Na(+)-K+ pump of rat erythrocytes. Duhm J; Zicha J Physiol Bohemoslov; 1990; 39(1):3-14. PubMed ID: 2142785 [TBL] [Abstract][Full Text] [Related]
19. Effects of potassium and ouabain on sodium transport in human red cells. Levin ML; Rector FC; Seldin DW Am J Physiol; 1968 Jun; 214(6):1328-32. PubMed ID: 5649487 [No Abstract] [Full Text] [Related]