These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 4531859)

  • 1. Cell-bound glucosyltransferase activity of Streptococcus sanguis strain 804.
    Sharma M; Dhillon AS; Newbrun E
    Arch Oral Biol; 1974 Nov; 19(11):1063-72. PubMed ID: 4531859
    [No Abstract]   [Full Text] [Related]  

  • 2. Sucrose metabolism by Streptococcus mutans, SL-I.
    Tanzer JM; Chassy BM; Krichevsky MI
    Biochim Biophys Acta; 1971 Feb; 261(2):379-87. PubMed ID: 4111389
    [No Abstract]   [Full Text] [Related]  

  • 3. Invertase activity in Streptococcus mutans and Streptococcus sanguis.
    McCabe MM; Smith EE; Cowman RA
    Arch Oral Biol; 1973 Apr; 18(4):525-31. PubMed ID: 4516065
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification, preliminary characterization, and evidence for regulation of invertase in Streptococcus mutans.
    Tanzer JM; Brown AT; McInerney MF
    J Bacteriol; 1973 Oct; 116(1):192-202. PubMed ID: 4745413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-D-Glucopyranosyl fluoride as a D-glucopyranosyl donor for a glycosyltransferase complex from Streptococcus mutans FA1.
    Figures WR; Edwards JR
    Carbohydr Res; 1976 Jun; 48(2):245-53. PubMed ID: 947539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition by acarbose, nojirimycin and 1-deoxynojirimycin of glucosyltransferase produced by oral streptococci.
    Newbrun E; Hoover CI; Walker GJ
    Arch Oral Biol; 1983; 28(6):531-6. PubMed ID: 6226260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variations in microbial and biochemical components of four-day plaque during a four-week controlled diet period.
    Dennis DA; Gawronski TH; Sudo SZ; Harris RS; Folke LE
    J Dent Res; 1975; 54(4):716-22. PubMed ID: 1057555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus.
    Konishi N; Torii Y; Yamamoto T; Miyagi A; Ohta H; Fukui K; Hanamoto S; Matsuno H; Komatsu H; Kodama T; Katayama E
    J Biochem; 1999 Aug; 126(2):287-95. PubMed ID: 10423519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase).
    Abo H; Matsumura T; Kodama T; Ohta H; Fukui K; Kato K; Kagawa H
    J Bacteriol; 1991 Feb; 173(3):989-96. PubMed ID: 1704006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of glucosyltransferase from Streptococcus mutans with various glucans.
    Hamada S; Torii M
    J Gen Microbiol; 1980 Jan; 116(1):51-9. PubMed ID: 6154120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent nature of the glucosyltransferase system of Streptococcus mutans.
    Ciardi JE; Hageage GJ; Wittenberger CL
    J Dent Res; 1976 Apr; 55 Spec No():C87-96. PubMed ID: 1063155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of hydrolase activity of the primer-dependent glucosyltransferases from Streptococcus sobrinus.
    Hanada N; Takehara T
    Microbios; 1991; 66(266):21-5. PubMed ID: 1830918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a streptococcal glucosyltransferase as a fusion to a solute-binding protein in Lactobacillus fermentum BR11.
    Hung J; Rathsam C; Jacques NA; Giffard PM
    FEMS Microbiol Lett; 2002 May; 211(1):71-5. PubMed ID: 12052553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secretion of fructosyltransferase by Streptococcus salivarius involves the sucrose-dependent release of the cell-bound form.
    Milward CP; Jacques NA
    J Gen Microbiol; 1990 Jan; 136(1):165-9. PubMed ID: 2141067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis.
    Tardif G; Sulavik MC; Jones GW; Clewell DB
    Infect Immun; 1989 Dec; 57(12):3945-8. PubMed ID: 2530177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fluoride, lithium and strontium on extracellular polysaccharide production by Streptococcus mutans and Actinomyces viscosus.
    Treasure P
    J Dent Res; 1981 Aug; 60 Spec No C():1601-10. PubMed ID: 6455453
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular basis for the association of glucosyltransferases with the cell surface of oral streptococci.
    Kato C; Kuramitsu HK
    FEMS Microbiol Lett; 1991 Apr; 63(2-3):153-7. PubMed ID: 1829422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of dietary sucrose levels on extracellular polysaccharide metabolism of human dental plaque.
    Gawronski TH; Staat RA; Zaki HA; Harris RS; Folke LE
    J Dent Res; 1975; 54(4):881-90. PubMed ID: 1057573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction rate of dextransucrase from Streptococcus sanguis in the presence of various compounds.
    Newbrun E; Carlsson J
    Arch Oral Biol; 1969 May; 14(5):461-8. PubMed ID: 5255458
    [No Abstract]   [Full Text] [Related]  

  • 20. Ultrastructure of glucans produced by cell-bound glucosyltransferase of the oral bacterium Streptococcus mutans AHT.
    Yakushiji T; Inoue M
    Arch Oral Biol; 1980; 25(5):297-303. PubMed ID: 6449920
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.