These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 4538158)

  • 1. The force-load-velocity relation and the viscous-like force in the frog skeletal muscle.
    Mashima H; Akazawa K; Kushima H; Fujii K
    Jpn J Physiol; 1972 Feb; 22(1):103-20. PubMed ID: 4538158
    [No Abstract]   [Full Text] [Related]  

  • 2. Some effects of organic anions on excitability and excitation-contraction coupling in frog skeletal muscle.
    Foulks JG; Perry FA
    Can J Physiol Pharmacol; 1977 Jun; 55(3):700-8. PubMed ID: 195697
    [No Abstract]   [Full Text] [Related]  

  • 3. The relation between external potassium concentration and the relaxation rate of potassium-induced contractures in frog skeletal muscle.
    Foulks JG; Perry FA
    J Physiol; 1966 Oct; 186(2):243-60. PubMed ID: 5972109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frog tonic muscle fibers: extracellular calcium and excitation-contraction coupling.
    Kirby AC
    Am J Physiol; 1970 Nov; 219(5):1446-50. PubMed ID: 5473133
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of pH on excitation and contraction in frog twitch muscle.
    Foulks JG; Perry FA
    Can J Physiol Pharmacol; 1977 Jun; 55(3):709-23. PubMed ID: 18272
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of dantrolene sodium on the inactivation of excitation-contraction coupling in frog skeletal muscle.
    Takauji M; Nagai T
    Jpn J Physiol; 1977; 27(6):743-54. PubMed ID: 613097
    [No Abstract]   [Full Text] [Related]  

  • 7. Force-velocity relation of frog skeletal muscle fibres shortening under continuously changing load.
    Iwamoto H; Sugaya R; Sugi H
    J Physiol; 1990 Mar; 422():185-202. PubMed ID: 2352179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on tubular transient current and mechanical activation in skeletal muscle of frog.
    Oba T; Hotta K
    Jpn J Physiol; 1980; 30(1):93-104. PubMed ID: 6966707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The threshold for potassium-induced contractures of frog skeletal muscle. Potentiation of potassium-induced contractures by preexposure to subthreshold potassium concentrations.
    Vos EC; Frank GB
    Can J Physiol Pharmacol; 1972 Jan; 50(1):37-44. PubMed ID: 4536660
    [No Abstract]   [Full Text] [Related]  

  • 10. Calcium dependence of potassium contractures in denervated frog muscle.
    Kirby AC; Lindley BD; Picken JR
    Am J Physiol; 1973 Jul; 225(1):166-70. PubMed ID: 4541360
    [No Abstract]   [Full Text] [Related]  

  • 11. Force-velocity relation in paired frog sartorius muscles attached to opposite lever arms.
    Toyoki T; Tsuchiya T; Tameyasu T; Sugi H
    Jpn J Physiol; 1985; 35(5):709-15. PubMed ID: 4079131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory action of dantrolene sodium on the activation of excitation-contraction coupling in frog skeletal muscle.
    Takauji M; Takahashi N; Suzuki T; Nagai T
    Jpn J Physiol; 1977; 27(6):731-41. PubMed ID: 613096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-load-velocity relation and the internal load of tetanized frog cardiac muscle.
    Mashima H
    Jpn J Physiol; 1977; 27(4):483-99. PubMed ID: 599742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle: dependence of potassium contractures on extracellular calcium.
    Stefani E; Chiarandini DJ
    Pflugers Arch; 1973 Oct; 343(2):143-50. PubMed ID: 4797850
    [No Abstract]   [Full Text] [Related]  

  • 15. Repolarization-induced reactivation of contracture tension in frog skeletal muscle.
    Foulks JG; Miller JA; Perry FA
    Can J Physiol Pharmacol; 1973 May; 51(5):324-34. PubMed ID: 4355716
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of dantrolene sodium on excitation-contraction coupling of frog toe muscle.
    Homma I; Kurihara S; Sakai T
    Jpn J Physiol; 1976; 26(1):53-61. PubMed ID: 957529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium conductance of frog muscle membrane under controlled voltage.
    ADRIAN RH; FREYGANG WH
    J Physiol; 1962 Aug; 163(1):104-14. PubMed ID: 13859478
    [No Abstract]   [Full Text] [Related]  

  • 18. Solubilization, physiological role, and localization of a key protein (31.5 kD) to excitation-contraction coupling process of frog skeletal muscle cells, using phenylglyoxal.
    Fujino S; Fujino M; Satoh K; Nakai T; Kado T; Arima T; Fujino M
    Adv Exp Med Biol; 1992; 311():339-40. PubMed ID: 1529765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of the ability of frog skeletal muscle to develop potassium contractures in calcium-deficient media.
    Foulks JG; Miller JA; Perry FA
    Can J Physiol Pharmacol; 1973 May; 51(5):335-43. PubMed ID: 4746701
    [No Abstract]   [Full Text] [Related]  

  • 20. Transient changes in the force-velocity relationship during tetanic contractions of frog sartorius muscles, normal or poisoned with 1-fluoro-2,4-dinitrobenzene.
    Dumoulin C; Maréchal G
    Pflugers Arch; 1970; 316(2):114-31. PubMed ID: 5461677
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.