These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae. Steinhart WL; Herriott RM J Bacteriol; 1968 Nov; 96(5):1718-24. PubMed ID: 5303721 [TBL] [Abstract][Full Text] [Related]
3. Influence of amino acids on the competence of Rhizobium trifolii. Drozańska D; Lorkiewicz Z Acta Microbiol Pol A; 1973; 5(1):27-30. PubMed ID: 4723718 [No Abstract] [Full Text] [Related]
4. Transformation in Rhizobium trifolii. 3. Transformation between different morphological mutants of Rhizobium trifolii. Zelazna-Kowalska I; Lorkiewicz Z; Dziak-Hoffman M Acta Microbiol Pol A; 1971; 3(1):3-9. PubMed ID: 5142875 [No Abstract] [Full Text] [Related]
5. Molecular events accompanying the fixation of genetic information in Haemophilus heterospecific transformation. Notani NK; Setlow JK J Bacteriol; 1972 Nov; 112(2):751-60. PubMed ID: 4538974 [TBL] [Abstract][Full Text] [Related]
6. Integration and repair of ultraviolet-irradiated transforming deoxyribonucleic acid in Haemophilus influenzae. Muhammed A; Setlow JK J Bacteriol; 1974 May; 118(2):514-22. PubMed ID: 4545328 [TBL] [Abstract][Full Text] [Related]
7. Residual activity of denatured transforming DNA of Haemophilus influenzae: a natrually occurring cross-linked DNA. Mulder C; Doty P J Mol Biol; 1968 Mar; 32(2):423-35. PubMed ID: 5300445 [No Abstract] [Full Text] [Related]
8. On the mechanism of integration following transformation with single-stranded DNA of Hemophilus influenzae. Goodgal SH; Postel EH J Mol Biol; 1967 Sep; 28(2):261-73. PubMed ID: 5299073 [No Abstract] [Full Text] [Related]
9. Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. Scocca JJ; Poland RL; Zoon KC J Bacteriol; 1974 May; 118(2):369-73. PubMed ID: 4597440 [TBL] [Abstract][Full Text] [Related]
11. Transformation in Rhizobium trifolii. IV. Correlation between streptomycin resistance and infectiveness in Rhizobium trifolii. Zelazna-Kowalska I; Lorkiewicz Z Acta Microbiol Pol A; 1971; 3(1):11-20. PubMed ID: 5129175 [No Abstract] [Full Text] [Related]
12. Fate of transforming deoxyribonucleate in Bacillus subtilis. Piechowska M; Fox MS J Bacteriol; 1971 Nov; 108(2):680-9. PubMed ID: 5001868 [TBL] [Abstract][Full Text] [Related]
13. Integration of donor DNA in bacterial conjugation. Siddiqi O; Fox MS J Mol Biol; 1973 Jun; 77(1):101-23. PubMed ID: 4588879 [No Abstract] [Full Text] [Related]
14. Fate of donor deoxyribonucleic acid in a highly transformation-deficient strain of Haemophilus influenzae. Kooistra J; Venema G J Bacteriol; 1974 Sep; 119(3):705-17. PubMed ID: 4546806 [TBL] [Abstract][Full Text] [Related]
15. Mechanism of inactivation of Haemophilus influenzae transforming deoxyribonucleic acid by sonic radiation. Randolph ML; Setlow JK J Bacteriol; 1972 Jul; 111(1):186-91. PubMed ID: 4544285 [TBL] [Abstract][Full Text] [Related]
16. Differential denaturation of Haemophilus influenzae DNA. Cooper AD; Huang PC Biochim Biophys Acta; 1971 Mar; 232(2):234-45. PubMed ID: 5313787 [No Abstract] [Full Text] [Related]
17. Transformation of effectiveness in Rhizobium japonicum. Zelazna-Kowalska I; Zurkowski W; Lorkiewicz Z; Menzies JD Acta Microbiol Pol A; 1974; 6(4):269-74. PubMed ID: 4477931 [No Abstract] [Full Text] [Related]
18. Transformation in Rhizobium japonicum. Marecková H Arch Mikrobiol; 1969 Oct; 68(2):113-5. PubMed ID: 5365772 [No Abstract] [Full Text] [Related]
19. Mechanism of inactivation of transforming deoxyribonucleic acid by X rays. Randolph ML; Setlow JK J Bacteriol; 1971 Apr; 106(1):221-6. PubMed ID: 5313645 [TBL] [Abstract][Full Text] [Related]
20. Molecular basis for the transformation defects in mutants of Haemophilus influenzae. Notani NK; Setlow JK; Joshi VR; Allison DP J Bacteriol; 1972 Jun; 110(3):1171-80. PubMed ID: 4537421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]