BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 453835)

  • 1. Utilization of chlorobenzoates by microbial populations in sewage.
    DiGeronimo MJ; Nikaido M; Alexander M
    Appl Environ Microbiol; 1979 Mar; 37(3):619-25. PubMed ID: 453835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of co-metabolism of chlorobenzoates by the co-substrate enrichment technique.
    Horvath RS
    Appl Microbiol; 1973 Jun; 25(6):961-3. PubMed ID: 4716724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of chlorocatechol meta cleavage products by a pseudomonad during metabolism of monochlorobiphenyls.
    Arensdorf JJ; Focht DD
    Appl Environ Microbiol; 1994 Aug; 60(8):2884-9. PubMed ID: 7521996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-chloro-, 2,3- and 3,5-dichlorobenzoate co-metabolism in a 2-chlorobenzoate-degrading consortium: role of 3,5-dichlorobenzoate as antagonist of 2-chlorobenzoate degradation. Metabolism and co-metabolism of chlorobenzoates.
    Baggi G; Bernasconi S; Zangrossi M
    Biodegradation; 2005 Jun; 16(3):275-82. PubMed ID: 15865151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2.
    Hickey WJ; Focht DD
    Appl Environ Microbiol; 1990 Dec; 56(12):3842-50. PubMed ID: 2128010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of and inhibition by chlorobenzoates in Pseudomonas putida P111.
    Hernandez BS; Higson FK; Kondrat R; Focht DD
    Appl Environ Microbiol; 1991 Nov; 57(11):3361-6. PubMed ID: 1781694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial metabolism of chlorosalicylates: accelerated evolution by natural genetic exchange.
    Rubio MA; Engesser KH; Knackmuss HJ
    Arch Microbiol; 1986 Jul; 145(2):116-22. PubMed ID: 3767567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad.
    Hartmann J; Reineke W; Knackmuss HJ
    Appl Environ Microbiol; 1979 Mar; 37(3):421-8. PubMed ID: 453823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlorobenzoate catabolism and interactions between Alcaligenes and Pseudomonas species from Bloody Run Creek.
    Wyndham RC; Straus NA
    Arch Microbiol; 1988; 150(3):230-6. PubMed ID: 3178396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in chlorobenzoate catabolism by Pseudomonas putida P111 as a consequence of genetic alterations.
    Brenner V; Hernandez BS; Focht DD
    Appl Environ Microbiol; 1993 Sep; 59(9):2790-4. PubMed ID: 8215353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Xenobiotic degradation in industrial sewage: haloaromatics as target substrates.
    Knackmuss HJ
    Biochem Soc Symp; 1983; 48():173-90. PubMed ID: 6400482
    [No Abstract]   [Full Text] [Related]  

  • 12. Co-metabolism of m-chlorobenzoate by natural microbial populations grown under co-substrate enrichment conditions.
    Horvath RS; Dotzlaf JE; Kreger R
    Bull Environ Contam Toxicol; 1975 Mar; 13(3):357-61. PubMed ID: 1125465
    [No Abstract]   [Full Text] [Related]  

  • 13. Diversity of biphenyl degraders in a chlorobenzene polluted aquifer.
    Abraham WR; Wenderoth DF; Glässer W
    Chemosphere; 2005 Jan; 58(4):529-33. PubMed ID: 15620745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time reverse transcription-PCR analysis of expression of halobenzoate and salicylate catabolism-associated operons in two strains of Pseudomonas aeruginosa.
    Corbella ME; Puyet A
    Appl Environ Microbiol; 2003 Apr; 69(4):2269-75. PubMed ID: 12676709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134.
    Ledger T; Pieper DH; Pérez-Pantoja D; González B
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3431-3440. PubMed ID: 12427935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250.
    Engesser KH; Schulte P
    FEMS Microbiol Lett; 1989 Jul; 51(1):143-7. PubMed ID: 2777062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: prevention of meta pathway.
    Reineke W; Jeenes DJ; Williams PA; Knackmuss HJ
    J Bacteriol; 1982 Apr; 150(1):195-201. PubMed ID: 7061393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic degradation of 3-halobenzoates by a denitrifying bacterium.
    Häggblom MM; Young LY
    Arch Microbiol; 1999 Mar; 171(4):230-6. PubMed ID: 10339806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency of chlorocatechol metabolism in natural and constructed chlorobenzoate and chlorobiphenyl degraders.
    Brenner V; Rucká L; Totevová S; Tømeraas K; Demnerová K
    J Appl Microbiol; 2004; 96(3):430-6. PubMed ID: 14962122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of chlorobenzoates on the utilisation of chlorobiphenyls and chlorobenzoate mixtures by chlorobiphenyl/chlorobenzoate-mineralising hybrid bacterial strains.
    Stratford J; Wright MA; Reineke W; Mokross H; Havel J; Knowles CJ; Robinson GK
    Arch Microbiol; 1996 Mar; 165(3):213-8. PubMed ID: 8599540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.