These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 4539243)

  • 1. Anomalies in the sedimentation of deoxyribonucleic acid from Haemophilus influenzae in alkaline sucrose gradients.
    Kantor GJ
    J Bacteriol; 1972 Dec; 112(3):1264-9. PubMed ID: 4539243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postreplication repair of ultraviolet damage in Haemophilus influenzae.
    Leclerc JE; Setlow JK
    J Bacteriol; 1972 Jun; 110(3):930-4. PubMed ID: 4537422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-strand regions in the deoxyribonucleic acid of competent Haemophilus influenzae.
    LeClerc JE; Setlow JK
    J Bacteriol; 1975 Jun; 122(3):1091-102. PubMed ID: 1080149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair of single-strand deoxyribonucleic acid breaks in ultraviolet light-irradiated Haemophilus influenzae.
    Kantor GJ; Barnhart BJ
    J Bacteriol; 1973 Mar; 113(3):1228-34. PubMed ID: 4540247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of inactivation of transforming deoxyribonucleic acid by X rays.
    Randolph ML; Setlow JK
    J Bacteriol; 1971 Apr; 106(1):221-6. PubMed ID: 5313645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology between the deoxyribonucleic acids of Haemophilus influenzae and Haemophilus parainfluenzae.
    Boling ME
    J Bacteriol; 1972 Nov; 112(2):745-50. PubMed ID: 4563974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis for the transformation defects in mutants of Haemophilus influenzae.
    Notani NK; Setlow JK; Joshi VR; Allison DP
    J Bacteriol; 1972 Jun; 110(3):1171-80. PubMed ID: 4537421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deoxyribonucleic acid breaks in heated Salmonella typhimurium LT-2 after exposure to nutritionally complex media.
    Gomez RF; Sinskey AJ
    J Bacteriol; 1973 Aug; 115(2):522-8. PubMed ID: 4579871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA replication of induced prophage in Haemophilus influenzae.
    Barnhart BJ; Cox SH
    J Virol; 1973 Jul; 12(1):165-76. PubMed ID: 4542009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of thymine starvation on the integrity of deoxyribonucleic acid in Escherichia coli.
    Baker ML; Hewitt RR
    J Bacteriol; 1971 Mar; 105(3):733-8. PubMed ID: 4926681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular events accompanying the fixation of genetic information in Haemophilus heterospecific transformation.
    Notani NK; Setlow JK
    J Bacteriol; 1972 Nov; 112(2):751-60. PubMed ID: 4538974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between single-strand DNA mass and sedimentation distance in alkaline sucrose gradients.
    Levin D; Hutchinson F
    J Mol Biol; 1973 Apr; 75(3):495-502. PubMed ID: 4199038
    [No Abstract]   [Full Text] [Related]  

  • 13. Alkaline sucrose gradient sedimentation of chromosomal deoxyribonucleic acid from Escherichia coli PolA + and PolA - strains during thymine starvation.
    Sedgwick SG; Bridges BA
    J Bacteriol; 1971 Dec; 108(3):1422-3. PubMed ID: 4945202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of the herpesvirus deoxyribonucleic acid duplex into unique fragments and intact strand on sedimentation in alkaline gradients.
    Frenkel N; Roizman B
    J Virol; 1972 Oct; 10(4):565-72. PubMed ID: 4343538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of inactivation of Haemophilus influenzae transforming deoxyribonucleic acid by sonic radiation.
    Randolph ML; Setlow JK
    J Bacteriol; 1972 Jul; 111(1):186-91. PubMed ID: 4544285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkaline lysis of mammalian cells for sedimentation analysis of nuclear DNA. Conformation of released DNA as monitored by physical, electron microscopic and enzymological techniques.
    Parodi S; Mulivor RA; Martin JT; Nicolini C; Sarma DS; Farber E
    Biochim Biophys Acta; 1975 Oct; 407(2):174-90. PubMed ID: 241420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ultraviolet light on division and deoxyribonucleic acid synthesis in Haemophilus influenzae.
    Kantor GJ; Barnhart BJ
    J Bacteriol; 1970 Jul; 103(1):1-8. PubMed ID: 4912522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of recipient deoxyribonucleic acid during transformation in Haemophilus influenzae.
    Steinhart WL; Herriott RM
    J Bacteriol; 1968 Nov; 96(5):1718-24. PubMed ID: 5303721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-stranded regions in transforming deoxyribonucleic acid after uptake by competent Haemophilus influenzae.
    Sedgwick B; Setlow JK
    J Bacteriol; 1976 Feb; 125(2):588-94. PubMed ID: 1081987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural occurrence of cross-linked vaccinia virus deoxyribonucleic acid.
    Berns KI; Silverman C
    J Virol; 1970 Mar; 5(3):299-304. PubMed ID: 5438108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.