These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 4539343)

  • 1. Instrumental conditioning of leg position in chronic spinal frog: before and after sciatic section.
    Farel PB; Buerger AA
    Brain Res; 1972 Dec; 47(2):345-51. PubMed ID: 4539343
    [No Abstract]   [Full Text] [Related]  

  • 2. Instrumental avoidance conditioning of increased leg lowering in the spinal rat.
    Sherman BS; Hoehler FK; Buerger AA
    Physiol Behav; 1982 Jul; 29(1):123-8. PubMed ID: 7122718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord of the frog, Rana catesbiana.
    Cruce WL
    J Neurophysiol; 1974 Jul; 37(4):691-704. PubMed ID: 4366213
    [No Abstract]   [Full Text] [Related]  

  • 4. Instrumental learning within the spinal cord: I. Behavioral properties.
    Grau JW; Barstow DG; Joynes RL
    Behav Neurosci; 1998 Dec; 112(6):1366-86. PubMed ID: 9926819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of temperature on habituation of the LC-VR reflex of the frog spinal cord.
    Levy WB; Rogers HR
    Physiol Behav; 1979 Apr; 22(4):647-52. PubMed ID: 314639
    [No Abstract]   [Full Text] [Related]  

  • 6. Isolated spinal cord of the frog--an in vitro model for the study of neuronal mechanisms of pain.
    Syková E; Vyklický L
    Physiol Bohemoslov; 1979; 28(3):227-30. PubMed ID: 157491
    [No Abstract]   [Full Text] [Related]  

  • 7. Habituation of a monosynaptic response in vertebrate central nervous system: lateral column-motoneuron pathway in isolated frog spinal cord.
    Farel PB; Glanzman DL; Thompson RF
    J Neurophysiol; 1973 Nov; 36(6):1117-30. PubMed ID: 4543415
    [No Abstract]   [Full Text] [Related]  

  • 8. Leg position learning in the cockroach nerve cord using an analog technique.
    Eisenstein EM; Carlson AD
    Physiol Behav; 1994 Oct; 56(4):687-91. PubMed ID: 7800734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of unavoidable shock on instrumental avoidance conditioning in spinal rats.
    Chopin SF; Bennett MH
    Physiol Behav; 1975 Apr; 14(04):399-401. PubMed ID: 1056039
    [No Abstract]   [Full Text] [Related]  

  • 10. The anatomical organization of hindlimb motoneurons in the lumbar spinal cord of the frog, Rana catesbiana.
    Cruce WL
    J Comp Neurol; 1974 Jan; 153(1):59-76. PubMed ID: 4544669
    [No Abstract]   [Full Text] [Related]  

  • 11. Properties of myelinated fibers in frog sciatic nerve and in spinal cord as examined with micro-electrodes.
    TASAKI I
    Jpn J Physiol; 1952 Nov; 3(1):73-94. PubMed ID: 13034379
    [No Abstract]   [Full Text] [Related]  

  • 12. Long-lasting habituation in spinal frogs.
    Farel PB
    Brain Res; 1971 Oct; 33(2):405-17. PubMed ID: 5289711
    [No Abstract]   [Full Text] [Related]  

  • 13. Graded acquisition of an instrumental avoidance response by the spinal rat.
    Chopin SF; Buerger AA
    Physiol Behav; 1975 Aug; 15(2):155-8. PubMed ID: 1187851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission of somatic sensory volleys through ascending spinal hindlimb pathways during sleep and wakefulness.
    Carli G; Kawamura H; Pompeiano O
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 298(2):163-9. PubMed ID: 4296576
    [No Abstract]   [Full Text] [Related]  

  • 15. Development of hindlimb locomotor activity in the bullfrog (Rana catesbeiana) studied in vitro.
    Stehouwer DJ; Farel PB
    Science; 1983 Feb; 219(4584):516-8. PubMed ID: 6600518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term alteration of leg position due to shock avoidance by spinal rats.
    Buerger AA; Fennessy A
    Exp Neurol; 1971 Feb; 30(2):195-211. PubMed ID: 5547250
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence for invasion of regenerated ventral root afferents into the spinal cord of the rat subjected to sciatic neurectomy during the neonatal period.
    Chung BS; Sheen K; Chung JM
    Brain Res; 1991 Jun; 552(2):311-9. PubMed ID: 1913193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cat lumbar spinal cord somatotopic map is unchanged after peripheral nerve crush and regeneration.
    Lisney SJ
    Brain Res; 1983 Jul; 271(1):166-9. PubMed ID: 6883114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slab gel analysis of rapidly transported proteins in the isolated frog nervous system.
    Barker JL; Neale JH; Bonner WM
    Brain Res; 1977 Mar; 124(1):191-6. PubMed ID: 66086
    [No Abstract]   [Full Text] [Related]  

  • 20. Instrumental learning within the spinal cord: VI. The NMDA receptor antagonist, AP5, disrupts the acquisition and maintenance of an acquired flexion response.
    Joynes RL; Janjua K; Grau JW
    Behav Brain Res; 2004 Oct; 154(2):431-8. PubMed ID: 15313031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.