These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 4541139)

  • 1. Nuclear magnetic resonance studies on intracellular sodium in human erythrocytes and frog muscle.
    Yeh HJ; Brinley FJ; Becker ED
    Biophys J; 1973 Jan; 13(1):56-71. PubMed ID: 4541139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of a wide range of intracellular sodium concentrations in erythrocytes by 23Na nuclear magnetic resonance.
    Boulanger Y; Vinay P; Desroches M
    Biophys J; 1985 Apr; 47(4):553-61. PubMed ID: 3986283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct evidence from nuclear magnetic resonance studies for bound sodium in forg skeletal muscle.
    Czeisler JL; Fritz OG; Swift TJ
    Biophys J; 1970 Mar; 10(3):260-8. PubMed ID: 5434648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear magnetic resonance studies of sodium ions in isolated frog muscle and liver.
    Martinez D; Silvidi AA; Stokes RM
    Biophys J; 1969 Oct; 9(10):1256-60. PubMed ID: 5824414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR studies of sodium and potassium in various biological tissues.
    Magnuson JA; Magnuson NS
    Ann N Y Acad Sci; 1973 Mar; 204():297-309. PubMed ID: 4513156
    [No Abstract]   [Full Text] [Related]  

  • 6. Assessment of the NMR visibility of intraerythrocytic sodium by flame photometric and ion-competitive studies.
    Nissen H; Jacobsen JP; Hørder M
    Magn Reson Med; 1989 Jun; 10(3):388-98. PubMed ID: 2733594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular space of frog skeletal muscle in vivo and in vitro: relation to proton magnetic resonance relaxation times.
    Neville MC; White S
    J Physiol; 1979 Mar; 288():71-83. PubMed ID: 313983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 23Na and flame photometric studies of the NMR visibility of sodium in rat muscle.
    Buist RJ; Deslauriers R; Saunders JK; Mainwood GW
    Can J Physiol Pharmacol; 1991 Nov; 69(11):1663-9. PubMed ID: 1804513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple procedure for NMR measurements of intra- and extracellular sodium in intact tissues.
    Bárány M; Venkatasubramanian PN
    Physiol Chem Phys Med NMR; 1986; 18(4):233-41. PubMed ID: 3615637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of sodium ion in muscle tissue and ion exchange resins through the application of nuclear magnetic resonance.
    Czeisler JL; Swift TJ
    Ann N Y Acad Sci; 1973 Mar; 204():261-73. PubMed ID: 4540948
    [No Abstract]   [Full Text] [Related]  

  • 11. Cation nuclear magnetic resonance (NMR). 7Li- and 23Na-NMR results obtained with human erythrocytes.
    Post JF
    Scanning Microsc; 1989 Sep; 3(3):877-84; discussion 884-6. PubMed ID: 2617269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR evidence for complexing of Na+ in muscle, kidney, and brain, and by actomyosin. The relation of cellular complexing of Na+ to water structure and to transport kinetics.
    Cope FW
    J Gen Physiol; 1967 May; 50(5):1353-75. PubMed ID: 6033590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear magnetic resonance studies of sodium and potassium in etiolated pea stem.
    Magnuson JA; Magnuson NS; Hendrix DL; Higinbotham N
    Biophys J; 1973 Aug; 13(8):763-71. PubMed ID: 4726878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 17 O nuclear magnetic resonance spectrum of H 2 17 O in frog striated muscle.
    Civan MM; Shporer M
    Biophys J; 1972 Apr; 12(4):404-13. PubMed ID: 4537032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance of sodium-23 linoleate-water. Basis for an alternative interpretation of sodium-23 spectra within cells.
    Shporer M; Civan MM
    Biophys J; 1972 Jan; 12(1):114-22. PubMed ID: 5061692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular pH measurement in frog muscle by means of 31P-nuclear magnetic resonance.
    Yoshizaki K; Nishikawa H; Yamada S; Morimoto T; Watari H
    Jpn J Physiol; 1979; 29(2):211-25. PubMed ID: 40052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na(+)-H+ and Na(+)-Li+ exchange are mediated by the same membrane transport protein in human red blood cells: an NMR investigation.
    Chi Y; Mo S; Mota de Freitas D
    Biochemistry; 1996 Sep; 35(38):12433-42. PubMed ID: 8823178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1H-NMR spectra of muscle, red cells, brain, liver, and kidney in acutely hyponatremic rats.
    Villey D; Martin G
    Physiol Chem Phys; 1974; 6(4):339-51. PubMed ID: 4457936
    [No Abstract]   [Full Text] [Related]  

  • 19. Cardiac glycoside-induced elevation of intracellular Na+ ion concentration in human erythrocytes studied by 23Na NMR spectroscopy: relationship between inotropy speed and elevation rate of intracellular Na+ ion concentration.
    Tanase T; Murakami N; Nagatsu A; Sakakibara J
    Biol Pharm Bull; 1993 Apr; 16(4):431-3. PubMed ID: 8358396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle.
    Gupta RK; Moore RD
    J Biol Chem; 1980 May; 255(9):3987-93. PubMed ID: 6966281
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.