These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 4542072)

  • 1. Hydroxylation of delta4-3-oxo-C19-steroids at position C-2 in the human fetus.
    Lisboa BP; Plasse JC
    Acta Endocrinol Suppl (Copenh); 1973; 173():139. PubMed ID: 4542072
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the metabolism of C-19 steroids in the human foeto-placental unit. 2. Metabolism of androstenedione and testosterone in the intact foeto-placental unit.
    Benagiano G; Kincl FA; Zielske F; Wiqvist N; Diczfalusy E
    Acta Endocrinol (Copenh); 1967 Oct; 56(2):203-20. PubMed ID: 6072687
    [No Abstract]   [Full Text] [Related]  

  • 3. Studies on the metabolism of C19 steroids in rat liver. 6-Alpha hydroxylation of 3-oxo-delta 4-steroids in rat liver microsomes.
    Gustafsson JA; Lisboa BP
    Eur J Biochem; 1970 Feb; 12(2):369-74. PubMed ID: 5459574
    [No Abstract]   [Full Text] [Related]  

  • 4. Aromatization of delta-7-C19-steroids to delta-7-estrogens by human placenta in vitro.
    Givner ML; Schilling G; Dvornik D
    Endocrinology; 1968 Nov; 83(5):984-91. PubMed ID: 4386779
    [No Abstract]   [Full Text] [Related]  

  • 5. On the 2-hydroxylation of testosterone by human fetal liver microsomes.
    Lisboa BP; Plasse JC
    Steroids Lipids Res; 1972; 3(2):142-50. PubMed ID: 4657988
    [No Abstract]   [Full Text] [Related]  

  • 6. Studies on the metabolism of steroids in the foetus. Metabolism of testosterone in the human foetal adrenals.
    Plasse JC; Lisboa BP
    Eur J Biochem; 1973 Nov; 39(2):449-54. PubMed ID: 4775061
    [No Abstract]   [Full Text] [Related]  

  • 7. The twin ion technique for detection of metabolites by gas chromatography-mass spectrometry: intermediates in estrogen biosynthesis.
    Braselton WE; Orr JC; Engel LL
    Anal Biochem; 1973 May; 53(1):64-85. PubMed ID: 4711114
    [No Abstract]   [Full Text] [Related]  

  • 8. Differences between germ-free and conventional rats in liver microsomal metabolism of steroids.
    Einarsson K; Gustafsson JA; Gustafsson BE
    J Biol Chem; 1973 May; 248(10):3623-30. PubMed ID: 4145010
    [No Abstract]   [Full Text] [Related]  

  • 9. Testosterone metabolism in slices and subcellular fractions of human liver.
    Engelhardt D; Karl HJ
    Acta Endocrinol Suppl (Copenh); 1973; 173():132. PubMed ID: 4146893
    [No Abstract]   [Full Text] [Related]  

  • 10. Intraadrenal steroid metabolism in the guinea pig: guinea pig adrenal microsomes metabolize androstenedione in a manner distinct from liver microsomes.
    Black VH; Wittig JC; Cheung P
    Endocr Res; 1995; 21(1-2):315-28. PubMed ID: 7588395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal absorption and metabolism of androstenedione in the dog. II. In vitro experiments.
    Harri MP; Nienstedt W; Hartiala K
    Steroids Lipids Res; 1972; 3(4):220-4. PubMed ID: 4658377
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the metabolism of C-19 steroids in the human foeto-placental unit. 4. Aromatisation and hydroxylation products formed by previable foetuses perfused withandrostenedione and testosterone.
    Mancuso S; Benagiano G; Dell'Acqua S; Shapiro M; Wiqvist N; Diczfalusy E
    Acta Endocrinol (Copenh); 1968 Feb; 57(2):208-27. PubMed ID: 4229819
    [No Abstract]   [Full Text] [Related]  

  • 13. [Hydrogenation of ring A of hydroxy derivatives of testosterone and androstenedione by rat liver preparations].
    Schriefers H; Ghraf R; Schmidt H
    Hoppe Seylers Z Physiol Chem; 1972 Mar; 353(3):378-84. PubMed ID: 5028203
    [No Abstract]   [Full Text] [Related]  

  • 14. Studies on the metabolism of C-19 steroids in the human foeto-placental unit. 3. Dehydrogenation and reduction prducts formed by previable foetuses with androstenedione and testosterone.
    Benagiano G; Mancuso S; Mancuso FP; Wiqvist N; Diczfalusy E
    Acta Endocrinol (Copenh); 1968 Feb; 57(2):187-207. PubMed ID: 5694183
    [No Abstract]   [Full Text] [Related]  

  • 15. Neonatal imprinting of liver microsomal hydroxylation and reduction of steroids.
    Einarsson K; Gustafsson JA; Stenberg A
    J Biol Chem; 1973 Jul; 248(14):4987-97. PubMed ID: 4717534
    [No Abstract]   [Full Text] [Related]  

  • 16. Comparative placental steroid synthesis. II. C 19 steroid metabolism by guinea-pig placentas and fetal adrenals in vitro.
    Grossman SB; Bloch E
    Steroids; 1973 Jun; 21(6):813-32. PubMed ID: 4268563
    [No Abstract]   [Full Text] [Related]  

  • 17. Studies on the metabolism of steroids in the foetus. Metabolism of 4-androstene-3,17-dione by human foetal-liver microsomes.
    Lisboa BP; Plasse JC
    Eur J Biochem; 1972 Dec; 31(2):378-85. PubMed ID: 4405243
    [No Abstract]   [Full Text] [Related]  

  • 18. Catabolism of C19-steroids by subcellular fractions of mammalian and avian tissues. I. Hydroxylation of ring A-saturated substrates by rat-liver microsomes.
    Chamberlain J; Jagarinec N; Ofner P
    Steroids; 1965; ():Suppl 2:1-12. PubMed ID: 4378919
    [No Abstract]   [Full Text] [Related]  

  • 19. The aromatization of (7 -3H) androstenedione by human placental mitochondria.
    Renwick AG; Oliver JF
    Steroids; 1973 Jul; 22(1):123-32. PubMed ID: 4146814
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies on the metabolism of C19 steroids in rat liver. 5. 18-Hydroxylation of 17 beta-hydroxy-C19 steroids in rat liver microsomes.
    Gustafsson JA; Lisboa BP
    Steroids; 1969 Dec; 14(6):659-74. PubMed ID: 5361341
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.