BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 454375)

  • 1. Modulation of Ca2+ efflux from heart mitochondria.
    Harris EJ
    Biochem J; 1979 Mar; 178(3):673-80. PubMed ID: 454375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of adenine nucleotide translocase inhibitors on dinitrophenol-induced Ca2+ efflux from pig heart mitochondria.
    Peng CF; Straub KD; Kane JJ; Murphy ML; Wadkins CL
    Biochim Biophys Acta; 1977 Nov; 462(2):403-13. PubMed ID: 588575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Ca2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention.
    Rottenberg H; Marbach M
    Biochim Biophys Acta; 1990 Mar; 1016(1):87-98. PubMed ID: 2310744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alloxan effects on mitochondria in vitro: correlation between endogenous adenine nucleotides and efflux of Ca2+.
    Boquist L
    Biochem Int; 1984 Nov; 9(5):637-41. PubMed ID: 6525199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenine nucleotides regulate Ca2+ transport in brain mitochondria.
    Rottenberg H; Marbach M
    FEBS Lett; 1989 Apr; 247(2):483-6. PubMed ID: 2497035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlated effluxes of adenine nucleotides, Mg2+ and Ca2+ induced in rat-liver mitochondria by external Ca2+ and phosphate.
    Zoccarato F; Rugolo M; Siliprandi D; Siliprandi N
    Eur J Biochem; 1981 Feb; 114(2):195-9. PubMed ID: 7215353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria.
    Jurkowitz MS; Geisbuhler T; Jung DW; Brierley GP
    Arch Biochem Biophys; 1983 May; 223(1):120-8. PubMed ID: 6190435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of mitochondrial calcium ion efflux by thiol-specific reagents and by thyroxine. The relationship to adenosine diphosphate retention and to mitochondrial permeability.
    Harris EJ; Al-Shaikhaly M; Baum H
    Biochem J; 1979 Aug; 182(2):455-64. PubMed ID: 41519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenine nucleotide transport in sonic submitochondrial particles. Kinetic properties and binding of specific inhibitors.
    Lauquin GJ; Villiers C; Michejda JW; Hryniewiecka LV; Vignais PV
    Biochim Biophys Acta; 1977 May; 460(2):331-45. PubMed ID: 15594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The losses of adenine nucleotide accompanying efflux of Ca2+ from heart, liver and kidney mitochondria.
    Harris EJ; Chen MS
    Biochem Biophys Res Commun; 1982 Feb; 104(4):1264-70. PubMed ID: 7073741
    [No Abstract]   [Full Text] [Related]  

  • 11. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.
    Nicholls DG; Scott ID
    Biochem J; 1980 Mar; 186(3):833-9. PubMed ID: 7396840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H+-dependent efflux of Ca2+ from heart mitochondria.
    Jurkowitz MS; Brierley GP
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):435-49. PubMed ID: 7161280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator.
    Moreno-Sánchez R
    Biochim Biophys Acta; 1983 Aug; 724(2):278-85. PubMed ID: 6309222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the mechanism by which Mg2+ and adenine nucleotides restore membrane potential in rat liver mitochondria deenergized by Ca2+ and phosphate.
    Toninello A; Siliprandi D; Siliprandi N
    Biochem Biophys Res Commun; 1983 Mar; 111(3):792-7. PubMed ID: 6838586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ba2+ sensitivity of the Na+-induced Ca2+ efflux in heart mitochondria: the site of inhibitory action.
    Lukács GL; Fonyó A
    Biochim Biophys Acta; 1986 Jun; 858(1):125-34. PubMed ID: 3707957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the electrogenic nature of the ATP-ADP exchange system in rat liver mitochondria.
    Laris PC
    Biochim Biophys Acta; 1977 Jan; 459(1):110-8. PubMed ID: 831780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of 2,4-dinitrophenol-induced potassium efflux by adenine nucleotides in mitochondria.
    Baranova OV; Skarga YY; Negoda AE; Mironova GD
    Biochemistry (Mosc); 2000 Feb; 65(2):218-22. PubMed ID: 10713551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphate-induced efflux of adenine nucleotides from rat-heart mitochondria: evaluation of the roles of the phosphate/hydroxyl exchanger and the dicarboxylate carrier.
    Wilson DE; Asimakis GK
    Biochim Biophys Acta; 1987 Oct; 893(3):470-9. PubMed ID: 3651445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria.
    Asimakis GK; Sordahl LA
    Am J Physiol; 1981 Nov; 241(5):H672-8. PubMed ID: 6272586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.