BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4543759)

  • 1. Proceedings: Netherlands Society for Microbiology meeting at Utrecht on 2 May 1973. Microbial metabolism of organic C1 and C2 compounds.
    Harder W
    Antonie Van Leeuwenhoek; 1973 Nov; 39(4):650-2. PubMed ID: 4543759
    [No Abstract]   [Full Text] [Related]  

  • 2. Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capsulatus.
    Eccleston M; Kelly DP
    J Gen Microbiol; 1973 Mar; 75(1):211-21. PubMed ID: 4722562
    [No Abstract]   [Full Text] [Related]  

  • 3. Bacterial metabolism of 3-hydroxy-3-methylglutaric acid.
    Ahmad N; Siddiqi M
    J Bacteriol; 1973 Jul; 115(1):162-7. PubMed ID: 4717513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological studies of methane and methanol-oxidizing bacteria: oxidation of C-1 compounds by Methylococcus capsulatus.
    Patel RN; Hoare DS
    J Bacteriol; 1971 Jul; 107(1):187-92. PubMed ID: 5563868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of C1-compound metabolism.
    Van Verseveld HW; Thauer RK
    Antonie Van Leeuwenhoek; 1987; 53(1):37-45. PubMed ID: 3314701
    [No Abstract]   [Full Text] [Related]  

  • 6. Revisiting the glyoxylate cycle: alternate pathways for microbial acetate assimilation.
    Ensign SA
    Mol Microbiol; 2006 Jul; 61(2):274-6. PubMed ID: 16856935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of glyoxylic acid to oxalic acid by glycolic acid oxidase.
    RICHARDSON KE; TOLBERT NE
    J Biol Chem; 1961 May; 236():1280-4. PubMed ID: 13741299
    [No Abstract]   [Full Text] [Related]  

  • 8. Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway.
    Welander PV; Metcalf WW
    J Bacteriol; 2008 Mar; 190(6):1928-36. PubMed ID: 18178739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative to the glyoxylate shunt.
    Schink B
    Mol Microbiol; 2009 Sep; 73(6):975-7. PubMed ID: 19682245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism.
    Kelly DP
    Annu Rev Microbiol; 1971; 25():177-210. PubMed ID: 4342704
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of adenosine monophosphate on intermediate metabolism and ribonucleic acid synthesis in Tetrahymena.
    Raugi GJ; Liang T; Blum JJ
    J Biol Chem; 1973 Dec; 248(23):8079-85. PubMed ID: 4201781
    [No Abstract]   [Full Text] [Related]  

  • 12. Metabolic regulation in Pseudomonas oxalaticus OX1. Autotrophic and heterotrophic growth on mixed substrates.
    Dijkhuizen L; Knight M; Harder W
    Arch Microbiol; 1978 Jan; 116(1):77-83. PubMed ID: 623498
    [No Abstract]   [Full Text] [Related]  

  • 13. Modularity of methylotrophy, revisited.
    Chistoserdova L
    Environ Microbiol; 2011 Oct; 13(10):2603-22. PubMed ID: 21443740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formaldehyde and formyl group intermediates of the oxidation of glyoxylate by living yeast and E. coli cells.
    BOLCATO V
    Experientia; 1959 Jun; 15(6):222. PubMed ID: 13672180
    [No Abstract]   [Full Text] [Related]  

  • 15. Microbial utilization of methanol.
    Cooney CL; Levine DW
    Adv Appl Microbiol; 1972; 15():337-65. PubMed ID: 4593294
    [No Abstract]   [Full Text] [Related]  

  • 16. Single-carbon chemistry of acetogenic and methanogenic bacteria.
    Zeikus JG; Kerby R; Krzycki JA
    Science; 1985 Mar; 227(4691):1167-73. PubMed ID: 3919443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study of the inhibitory effect of acetylene on the biological methane formation in a paddy soil (author's transl)].
    Raimbault M
    Ann Microbiol (Paris); 1975; 126(2):247-58. PubMed ID: 1155881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological and biochemical aspects of microbial growth on C1 compounds.
    Colby J; Dalton H; Whittenbury R
    Annu Rev Microbiol; 1979; 33():481-517. PubMed ID: 386931
    [No Abstract]   [Full Text] [Related]  

  • 19. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations.
    Cappenberg TE
    Antonie Van Leeuwenhoek; 1974; 40(2):285-95. PubMed ID: 4599093
    [No Abstract]   [Full Text] [Related]  

  • 20. [Evaluation of substrates for microbial growth on the basis of their carbon/energy ratio].
    Babel W
    Z Allg Mikrobiol; 1979; 19(9):671-7. PubMed ID: 545913
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.