These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 454386)

  • 1. Myofibrillar protein degradation and muscle proteinases in normal and diabetic rats.
    Dahlmann B; Schroeter C; Herbertz L; Reinauer H
    Biochem Med; 1979 Feb; 21(1):33-9. PubMed ID: 454386
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of corticosterone on myofibrillar protein turnover in diabetic rats as assessed by Ntau-methylhistidine excretion.
    Tomas FM
    Biochem J; 1982 Dec; 208(3):593-601. PubMed ID: 6762211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive effects of insulin and corticosterone on myofibrillar protein turnover in rats as determined by N tau-methylhistidine excretion.
    Tomas FM; Murray AJ; Jones LM
    Biochem J; 1984 Jun; 220(2):469-79. PubMed ID: 6378188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of the degradation of myofibrillar and total proteins in skeletal muscle of rats: effects of streptozotocin-induced diabetes, dietary protein and starvation.
    Kadowaki M; Harada N; Takahashi S; Noguchi T; Naito H
    J Nutr; 1989 Mar; 119(3):471-7. PubMed ID: 2646402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skeletal muscle proteolysis in rats with acute streptozocin-induced diabetes.
    Smith OL; Wong CY; Gelfand RA
    Diabetes; 1989 Sep; 38(9):1117-22. PubMed ID: 2670642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of different proteolytic pathways in degradation of muscle protein from streptozotocin-diabetic rats.
    Pepato MT; Migliorini RH; Goldberg AL; Kettelhut IC
    Am J Physiol; 1996 Aug; 271(2 Pt 1):E340-7. PubMed ID: 8770029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myofibrillar protein breakdown in skeletal muscle is diminished in rats with chronic streptozocin-induced diabetes.
    Goodman MN
    Diabetes; 1987 Jan; 36(1):100-5. PubMed ID: 3098608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein turnover in insulin-treated, alloxan-diabetic lean and obese Zucker rats.
    Chan CP; Hansen RJ; Stern JS
    J Nutr; 1985 Aug; 115(8):959-69. PubMed ID: 3894602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insulin effect on proteolytic activities in rat skeletal muscle.
    Röthig HJ; Stiller N; Dahlmann B; Reinauer H
    Horm Metab Res; 1978 Mar; 10(2):101-4. PubMed ID: 25834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein degradation in skeletal muscle: implications of a first order reaction for the degradative process.
    Millward DJ; Bates PC
    Acta Biol Med Ger; 1981; 40(10-11):1309-15. PubMed ID: 7043995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of corticosterone treatment on muscle protein turnover in adrenalectomized rats and diabetic rats maintained on insulin.
    Odedra BR; Millward DJ
    Biochem J; 1982 Jun; 204(3):663-72. PubMed ID: 6181774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in proteinase/proteinase inhibitor levels in rat skeletal muscle tissue during diabetes and fasting.
    Kuehn L; Dahlmann B; Heath R; Kay J
    Biol Chem Hoppe Seyler; 1988 May; 369 Suppl():299-305. PubMed ID: 3060141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle protein wasting in diabetes mellitus: role of proteases.
    Dahlmann B; Kuehn L; Reinauer H; Kay J; Stauber WT
    Contrib Nephrol; 1989; 73():127-36; discussion 137-8. PubMed ID: 2689088
    [No Abstract]   [Full Text] [Related]  

  • 14. Regulation of different proteolytic pathways in skeletal muscle in fasting and diabetes mellitus.
    Kettelhut IC; Pepato MT; Migliorini RH; Medina R; Goldberg AL
    Braz J Med Biol Res; 1994 Apr; 27(4):981-93. PubMed ID: 8087098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteasome production in human muscle during nutritional inhibition of myofibrillar protein degradation.
    Brodsky IG; Suzara D; Furman M; Goldspink P; Ford GC; Nair KS; Kukowski J; Bedno S
    Metabolism; 2004 Mar; 53(3):340-7. PubMed ID: 15015147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscular dystrophy and activation of proteinases.
    Kar NC; Pearson CM
    Muscle Nerve; 1978; 1(4):308-13. PubMed ID: 35747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin- and thyroid hormone-independent adaptation of myofibrillar proteolysis to glucocorticoids.
    Kayali AG; Goodman MN; Lin J; Young VR
    Am J Physiol; 1990 Nov; 259(5 Pt 1):E699-705. PubMed ID: 2240209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of glucocorticoids on skeletal muscle proteolysis in normal and diabetic-adrenalectomized eviscerated rats.
    Smith OL; Wong CY; Gelfand RA
    Metabolism; 1990 Jun; 39(6):641-6. PubMed ID: 2191192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteinases in cardiac and skeletal muscle.
    Bird JW; Carter JH; Triemer RE; Brooks RM; Spanier AM
    Fed Proc; 1980 Jan; 39(1):20-5. PubMed ID: 6985869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myofibrillar protein degradation after eccentric exercise.
    Snyder AC; Lamb DR; Salm CP; Judge MD; Aberle ED; Mills EW
    Experientia; 1984 Jan; 40(1):69-70. PubMed ID: 6319174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.