These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 454440)

  • 1. Phospholipid vesicle fusion monitored by fluorescence energy transfer.
    Gibson GA; Loew LM
    Biochem Biophys Res Commun; 1979 May; 88(1):135-40. PubMed ID: 454440
    [No Abstract]   [Full Text] [Related]  

  • 2. Fusion of phospholipid vesicles containing a trypsin-sensitive fluorogenic substrate and trypsin: a new method to study membrane fusion activity in a model system.
    Hoekstra D; Yaron A; Carmel A; Scherphof G
    FEBS Lett; 1979 Oct; 106(1):176-80. PubMed ID: 499492
    [No Abstract]   [Full Text] [Related]  

  • 3. Application of Forster resonance energy transfer to interactions between cell or lipid vesicle surfaces.
    Gibson GA; Loew LM
    Biochem Biophys Res Commun; 1979 May; 88(1):141-6. PubMed ID: 454441
    [No Abstract]   [Full Text] [Related]  

  • 4. Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membrane--membrane adhesion.
    Niles WD; Silvius JR; Cohen FS
    J Gen Physiol; 1996 Mar; 107(3):329-51. PubMed ID: 8868046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of energy transfer to assay the association of proteins with lipid membranes.
    Vaz WL; Kaufmann K; Nicksch A
    Anal Biochem; 1977 Dec; 83(2):385-93. PubMed ID: 603032
    [No Abstract]   [Full Text] [Related]  

  • 6. Monitoring of phospholipid vesicle fusion by fluorescence energy transfer between membrane-bound dye labels.
    Vanderwerf P; Ullman EF
    Biochim Biophys Acta; 1980 Feb; 596(2):302-14. PubMed ID: 6766742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the Ca2+ transport mechanism of X537A in phospholipid membranes using fluorescence and rapid kinetic techniques.
    Haynes DH; Chiu VC; Watson B
    Arch Biochem Biophys; 1980 Aug; 203(1):73-89. PubMed ID: 7406515
    [No Abstract]   [Full Text] [Related]  

  • 8. The use of fluorescence energy transfer to distinguish between poly(ethylene glycol)-induced aggregation and fusion of phospholipid vesicles.
    Morgan CG; Thomas EW; Yianni YP
    Biochim Biophys Acta; 1983 Mar; 728(3):356-62. PubMed ID: 6687434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of membrane fusion by phospholipid head groups. I. Phosphatidate/phosphatidylinositol specificity.
    Sundler R; Papahadjopoulos D
    Biochim Biophys Acta; 1981 Dec; 649(3):743-50. PubMed ID: 7317426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface density determination in membranes by fluorescence energy transfer.
    Fung BK; Stryer L
    Biochemistry; 1978 Nov; 17(24):5241-8. PubMed ID: 728398
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of ions on vesicles and phospholipid dispersions studied by polarization of fluorescence.
    Lussan C; Faucon JF
    Biochim Biophys Acta; 1974 Apr; 345(1):83-90. PubMed ID: 4209039
    [No Abstract]   [Full Text] [Related]  

  • 12. Vesicle fusion studied by surface plasmon resonance and surface plasmon fluorescence spectroscopy.
    Morigaki K; Tawa K
    Biophys J; 2006 Aug; 91(4):1380-7. PubMed ID: 16731563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane fusion. Transfer of phospholipid molecules between phospholipid bilayer membranes.
    Maeda T; Ohnishi S
    Biochem Biophys Res Commun; 1974 Oct; 60(4):1509-16. PubMed ID: 4371499
    [No Abstract]   [Full Text] [Related]  

  • 14. Phospholipid bilayer-micelle transformation.
    Oki S; Aono O
    J Colloid Interface Sci; 1970 Feb; 32(2):270-81. PubMed ID: 5416899
    [No Abstract]   [Full Text] [Related]  

  • 15. Calculation on fluorescence resonance energy transfer on surfaces.
    Dewey TG; Hammes GG
    Biophys J; 1980 Dec; 32(3):1023-35. PubMed ID: 7260308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity for the exchange of phospholipids through polymyxin B mediated intermembrane molecular contacts.
    Cajal Y; Ghanta J; Easwaran K; Surolia A; Jain MK
    Biochemistry; 1996 May; 35(18):5684-95. PubMed ID: 8639528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct vesicle-vesicle exchange of phospholipids mediated by polymyxin B.
    Cajal Y; Berg OG; Jain MK
    Biochem Biophys Res Commun; 1995 May; 210(3):746-52. PubMed ID: 7763248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Kinetics of interaction between apomyoglobin and phospholipid membrane].
    Balobanov VA; Il'ina NB; Katina NS; Kashparov IA; Dolgikh DA; Bychkova VE
    Mol Biol (Mosk); 2010; 44(4):708-17. PubMed ID: 20873231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermembrane molecular contacts by polymyxin B mediate exchange of phospholipids.
    Cajal Y; Rogers J; Berg OG; Jain MK
    Biochemistry; 1996 Jan; 35(1):299-308. PubMed ID: 8555188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aluminum-induced lipid phase separation and membrane fusion does not require the presence of negatively charged phospholipids.
    Deleers M; Servais JP; Wülfert E
    Biochem Int; 1987 Jun; 14(6):1023-34. PubMed ID: 3453092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.