These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 454440)

  • 21. Fluorescence energy transfer between Ca2+ transport ATPase molecules in artificial membranes.
    Vanderkooi JM; Ierokomas A; Nakamura H; Martonosi A
    Biochemistry; 1977 Apr; 16(7):1262-7. PubMed ID: 139160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of Cdc42 membrane extraction by Rho-GDI monitored by real-time fluorescence resonance energy transfer.
    Nomanbhoy TK; Erickson JW; Cerione RA
    Biochemistry; 1999 Feb; 38(6):1744-50. PubMed ID: 10026253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals.
    Papahadjopoulos D; Vail WJ; Pangborn WA; Poste G
    Biochim Biophys Acta; 1976 Oct; 448(2):265-83. PubMed ID: 822885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane.
    Cohen FS; Zimmerberg J; Finkelstein A
    J Gen Physiol; 1980 Mar; 75(3):251-70. PubMed ID: 6247418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association of lysozyme to phospholipid surfaces and vesicle fusion.
    Arnold K; Hoekstra D; Ohki S
    Biochim Biophys Acta; 1992 Feb; 1124(1):88-94. PubMed ID: 1543731
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of lipid headgroup and packing stress on poly(ethylene glycol)-induced phospholipid vesicle aggregation and fusion.
    Yang Q; Guo Y; Li L; Hui SW
    Biophys J; 1997 Jul; 73(1):277-82. PubMed ID: 9199792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Calcium-induced interaction of phospholipid vesicles and bilayer lipid membranes.
    Düzgüneş N; Ohki S
    Biochim Biophys Acta; 1977 Jun; 467(3):301-8. PubMed ID: 884073
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of aqueous space markers to determine the mechanism of interaction between phospholipid vesicles and cells.
    Szoka FC; Jacobson K; Papahadjopoulos D
    Biochim Biophys Acta; 1979 Mar; 551(2):295-303. PubMed ID: 420835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of two liposome fusion assays monitoring the intermixing of aqueous contents and of membrane components.
    Rosenberg J; Düzgüneş N; Kayalar C
    Biochim Biophys Acta; 1983 Oct; 735(1):173-80. PubMed ID: 6626546
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic study of the aggregation and lipid mixing produced by alpha-sarcin on phosphatidylglycerol and phosphatidylserine vesicles: stopped-flow light scattering and fluorescence energy transfer measurements.
    Mancheño JM; Gasset M; Lacadena J; Ramón F; Martínez del Pozo A; Oñaderra M; Gavilanes JG
    Biophys J; 1994 Sep; 67(3):1117-25. PubMed ID: 7811923
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phospholipid model membranes. II. Permeability properties of hydrated liquid crystals.
    Papahadjopoulos D; Watkins JC
    Biochim Biophys Acta; 1967 Sep; 135(4):639-52. PubMed ID: 6048247
    [No Abstract]   [Full Text] [Related]  

  • 32. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Salt-triggered intermembrane exchange of phospholipids and hemifusion by myelin basic protein.
    Cajal Y; Boggs JM; Jain MK
    Biochemistry; 1997 Mar; 36(9):2566-76. PubMed ID: 9054563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic light scattering study of calcium-induced fusion in phospholipid vesicles.
    Day EP; Ho JT; Kunze RK; Sun ST
    Biochim Biophys Acta; 1977 Nov; 470(3):503-8. PubMed ID: 411510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of membrane fusion by calcium-binding proteins.
    Hong K; Düzgüneş N; Papahadjopoulos D
    Biophys J; 1982 Jan; 37(1):297-305. PubMed ID: 6459804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of portal region lysine residues in electrostatic interactions between heart fatty acid binding protein and phospholipid membranes.
    Herr FM; Aronson J; Storch J
    Biochemistry; 1996 Jan; 35(4):1296-303. PubMed ID: 8573586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Composition and asymmetry in supported membranes formed by vesicle fusion.
    Wacklin HP
    Langmuir; 2011 Jun; 27(12):7698-707. PubMed ID: 21612246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorimetric detection of phospholipid vesicles bound to planar phospholipid membranes.
    Niles WD; Eisenberg M
    Biophys J; 1985 Aug; 48(2):321-5. PubMed ID: 4052565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of a Ca-2+-triggered membrane aggregation reaction of phospholipid membranes.
    Lansman J; Haynes DH
    Biochim Biophys Acta; 1975 Jul; 394(3):335-47. PubMed ID: 1131369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol.
    Sundler R; Düzgüneş N; Papahadjopoulos D
    Biochim Biophys Acta; 1981 Dec; 649(3):751-8. PubMed ID: 7317427
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.