These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 4545390)

  • 1. Calcium-activated tension of skinned muscle fibers of the frog. Dependence on magnesium adenosine triphosphate concentration.
    Godt RE
    J Gen Physiol; 1974 Jun; 63(6):722-39. PubMed ID: 4545390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria.
    Ferenczi MA; Goldman YE; Simmons RM
    J Physiol; 1984 May; 350():519-43. PubMed ID: 6611405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of changing the composition of the bathing solutions upon the isometric tension-pCa relationship in bundles of crustacean myofibrils.
    Ashley CC; Moisescu DG
    J Physiol; 1977 Sep; 270(3):627-52. PubMed ID: 20499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tension in skinned frog muscle fibers in solutions of varying ionic strength and neutral salt composition.
    Gordon AM; Godt RE; Donaldson SK; Harris CE
    J Gen Physiol; 1973 Nov; 62(5):550-74. PubMed ID: 4543066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rigor tension in single skinned rat cardiac cell: role of myofibrillar creatine kinase.
    Veksler VI; Lechene P; Matrougui K; Ventura-Clapier R
    Cardiovasc Res; 1997 Dec; 36(3):354-62. PubMed ID: 9534856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments.
    Iino M
    J Physiol; 1981 Nov; 320():449-67. PubMed ID: 6976434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonparallel isometric tension response of rabbit soleus skinned muscle fibers to magnesium adenosine triphosphate and magnesium inosine triphosphate.
    Krasner B
    J Gen Physiol; 1979 Aug; 74(2):261-74. PubMed ID: 490142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic strength and the contraction kinetics of skinned muscle fibers.
    Thames MD; Teichholz LE; Podolsky RJ
    J Gen Physiol; 1974 Apr; 63(4):509-30. PubMed ID: 4544880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contractile responses to MgATP and pH in a thick filament regulated muscle: studies with skinned scallop fibers.
    Godt RE; Morgan JL
    Adv Exp Med Biol; 1984; 170():569-72. PubMed ID: 6611034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation by substrate concentration of maximal shortening velocity and isometric force in single myofibrils from frog and rabbit fast skeletal muscle.
    Tesi C; Colomo F; Nencini S; Piroddi N; Poggesi C
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):847-53. PubMed ID: 10200430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of myofibrillar creatine kinase in the relaxation of rigor tension in skinned cardiac muscle.
    Ventura-Clapier R; Vassort G
    Pflugers Arch; 1985 May; 404(2):157-61. PubMed ID: 3874393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery.
    Itoh T; Kanmura Y; Kuriyama H
    J Physiol; 1986 Jul; 376():231-52. PubMed ID: 3098964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.
    Julian FJ
    J Physiol; 1971 Oct; 218(1):117-45. PubMed ID: 5316143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creatine kinase in regulation of heart function and metabolism. II. The effect of phosphocreatine on the rigor tension of EGTA-treated rat myocardial fibers.
    Veksler VI; Kapelko VI
    Biochim Biophys Acta; 1984 Apr; 803(4):265-70. PubMed ID: 6422995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tension in mechanically disrupted mammalian cardiac cells: effects of magnesium adenosine triphosphate.
    Best PM; Donaldson SK; Kerrick WG
    J Physiol; 1977 Feb; 265(1):1-17. PubMed ID: 850150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of tension in the skinned crayfish muscle fiber. I. Contraction and relaxation in the absence of Ca (pCa is greater than 9).
    Reuben JP; Brandt PW; Berman M; Grundfest H
    J Gen Physiol; 1971 Apr; 57(4):385-407. PubMed ID: 5549096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of creatine kinase in force development in chemically skinned rat cardiac muscle.
    Ventura-Clapier R; Mekhfi H; Vassort G
    J Gen Physiol; 1987 May; 89(5):815-37. PubMed ID: 3496424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contraction of rabbit skinned skeletal muscle fibers at low levels of magnesium adenosine triphosphate.
    Moss RL; Haworth RA
    Biophys J; 1984 Apr; 45(4):733-42. PubMed ID: 6232958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-bridge behaviour in skinned smooth muscle of the guinea-pig taenia coli at altered ionic strength.
    Arheden H; Arner A; Hellstrand P
    J Physiol; 1988 Sep; 403():539-58. PubMed ID: 3267022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise.
    Heinl P; Kuhn HJ; Rüegg JC
    J Physiol; 1974 Mar; 237(2):243-58. PubMed ID: 4545181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.