These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 4546000)

  • 1. Proceedings: Induction of dinitrochlorobenzene contact sensitivity in dogs. Transfer of sensitivity by thoracic duct lymphocytes and suppression of sensitivity by anti-thymocyte serum.
    Nobréus N; Magnusson B; Leandoer L; Attström R
    Monogr Allergy; 1974; 8(0):100-9. PubMed ID: 4546000
    [No Abstract]   [Full Text] [Related]  

  • 2. Tolerance and contact sensitivity to DNFB in mice. 3. Transfer of tolerance with "suppressor T cells".
    Phanupak P; Moorhead JW; Claman HN
    J Immunol; 1974 Oct; 113(4):1230-6. PubMed ID: 4547338
    [No Abstract]   [Full Text] [Related]  

  • 3. Initiation of antibody responses by different classes of lymphocytes. IV. Lymphocytes involved in the primary antibody response to a hapten-protein conjugate.
    Strober S; Law LW
    Immunology; 1971 May; 20(5):831-8. PubMed ID: 4137730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antigen-binding T and B lymphocytes in sensitization and unresponsiveness to dinitrochlorobenzene (DNCB) contact sensitivity.
    Polak L; Rydén A; Roelants GE
    Immunology; 1975 Mar; 28(3):479-84. PubMed ID: 1079198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro sensitisation to dinitrochlorobenzene in guinea pigs.
    Polak L; Macher E
    Nature; 1974 Dec; 252(5485):748-9. PubMed ID: 4437634
    [No Abstract]   [Full Text] [Related]  

  • 6. Proceedings: Control mechanisms in cell-mediated immunity. The separate control of net DNA synthesis and of contact sensitivity skin reactions and the role of thymus-derived cells.
    Asherson GL; Zembala M; Wood PJ
    Monogr Allergy; 1974; 8(0):154-67. PubMed ID: 4546001
    [No Abstract]   [Full Text] [Related]  

  • 7. Contact sensitivity in the mouse. V. The role of macrophage cytophilic antibody in passive transfer and the effect of trypsin and anti-gamma globulin serum.
    Zembala M; Asherson GL
    Cell Immunol; 1970 Sep; 1(3):276-89. PubMed ID: 4331910
    [No Abstract]   [Full Text] [Related]  

  • 8. Antigen receptors on murine T lymphocytes in contact sensitivity. II. Presentation and characterization of syngeneic anti-idiotype serum against DNFB-sensitized T cells.
    Moorhead JW; Sy MS
    J Immunol; 1982 Jun; 128(6):2533-8. PubMed ID: 6176644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings: Further studies on sensitization to picric acid.
    Chase MW; Maguire HC
    Monogr Allergy; 1974; 8(0):1-12. PubMed ID: 4837096
    [No Abstract]   [Full Text] [Related]  

  • 10. The effect of excision of the site of application on the induction of delayed contact sensitivity.
    Godfrey HP; Baer H
    J Immunol; 1971 Dec; 107(6):1643-6. PubMed ID: 5120400
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of the elimination of suppressor cells on the development of DNCB contact sensitivity in guinea-pig.
    Polak L; Rinck C
    Immunology; 1977 Sep; 33(3):305-11. PubMed ID: 908581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological factors in contact sensitivity. Studies in mouse and man.
    Roupe G
    Acta Derm Venereol Suppl (Stockh); 1979; (84):1-35. PubMed ID: 315690
    [No Abstract]   [Full Text] [Related]  

  • 13. Antigen-laden cells in thoracic duct lymph. Implications for adoptive transfer experiments.
    Bell EB
    Immunology; 1979 Dec; 38(4):797-808. PubMed ID: 93086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies in immuno-suppression. Methods to evaluate anti-human lymphocyte sera.
    Balner H; Dersjant H; van Bekkum DW
    Transplant Proc; 1969 Mar; 1(1):629-37. PubMed ID: 5002666
    [No Abstract]   [Full Text] [Related]  

  • 15. Dermal and intravascular Langerhans cells at sites of passively induced allergic contact sensitivity.
    Silberberg I; Baer RL; Rosenthal SA; Thorbecke GJ; Berezowsky V
    Cell Immunol; 1975 Aug; 18(2):435-53. PubMed ID: 1139641
    [No Abstract]   [Full Text] [Related]  

  • 16. Passive serologic transfer of allograft immunity in immunologically suppressed mice. I. Immunosuppression by heterologous anti-lymphocyte serum.
    Kinne DW; Simmons RL
    J Immunol; 1967 Feb; 98(2):251-5. PubMed ID: 5335575
    [No Abstract]   [Full Text] [Related]  

  • 17. Anti-haptene T suppressor factor acts through an I-J+, Ly1-2+, T acceptor cell that releases a nonspecific inhibitor of the transfer of contact sensitivity when exposed to antigen.
    Zembala MA; Asherson GL; James BM; Stein VE; Watkins MC
    J Immunol; 1982 Nov; 129(5):1823-9. PubMed ID: 6811654
    [No Abstract]   [Full Text] [Related]  

  • 18. Suppressor T cell circuits in contact sensitivity. I. Two mechanistically distinct waves of suppressor T cells occur in mice tolerized with syngeneic DNP-modified lymphoid cells.
    Miller SD; Butler LD; Claman HN
    J Immunol; 1982 Aug; 129(2):461-8. PubMed ID: 6211486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hapten-cell conjugates in DNCB contact sensitivity. In vitro stimulation with DNP-conjugates optimally inducing contact sensitivity in vivo.
    von Blomberg M; Scheper RJ
    Immunology; 1980 Feb; 39(2):291-9. PubMed ID: 7380474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Schistosoma mansoni infection in the rat. II. Effects of immunosuppression and serum and cell transfer on innate and acquired immunity.
    Maddison SE; Geiger SJ; Botero B; Kagan IG
    J Parasitol; 1970 Dec; 56(6):1066-73. PubMed ID: 5504538
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.