These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase. Bonomi F; Pagani S; Cerletti P; Cannella C Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999 [TBL] [Abstract][Full Text] [Related]
6. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics. Libiad M; Sriraman A; Banerjee R J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of L-[sulfane-34S]thiocystine by Escherichia coli. White RH Biochemistry; 1982 Aug; 21(18):4271-5. PubMed ID: 6812623 [TBL] [Abstract][Full Text] [Related]
8. The effect of cAMP and some sulphur compounds upon the activity of mercaptopyruvate sulphurtransferase and rhodanese in mouse liver. Wróbel M; Frendo J Folia Biol (Krakow); 1992; 40(1-2):11-4. PubMed ID: 1333420 [TBL] [Abstract][Full Text] [Related]
9. The differential functional stability of various forms of bovine liver rhodanese. Aird BA; Horowitz PM Biochim Biophys Acta; 1988 Aug; 956(1):30-8. PubMed ID: 3165676 [TBL] [Abstract][Full Text] [Related]
10. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates. Prasad AR; Horowitz PM Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649 [TBL] [Abstract][Full Text] [Related]
11. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330 [TBL] [Abstract][Full Text] [Related]
12. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP. Wang W; Zhou P; He Y; Yu L; Xiong Y; Tian C; Wu F Biochem Biophys Res Commun; 2014 Sep; 452(3):817-21. PubMed ID: 25204500 [TBL] [Abstract][Full Text] [Related]
13. Histochemical localization of rhodanese activity in rat liver and skeletal muscle. Devlin DJ; Mills JW; Smith RP Toxicol Appl Pharmacol; 1989 Feb; 97(2):247-55. PubMed ID: 2922757 [TBL] [Abstract][Full Text] [Related]
14. Methods for in situ visualization and assay of sulfurtransferases. Aird BA; Lane J; Westley J Anal Biochem; 1987 Aug; 164(2):554-8. PubMed ID: 3479029 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of a prokaryotic sulfurtransferase. Aird BA; Heinrikson RL; Westley J J Biol Chem; 1987 Dec; 262(36):17327-35. PubMed ID: 3480285 [TBL] [Abstract][Full Text] [Related]
17. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus. Giuliani MC; Jourlin-Castelli C; Leroy G; Hachani A; Giudici-Orticoni MT Biochimie; 2010 Apr; 92(4):388-97. PubMed ID: 20060433 [TBL] [Abstract][Full Text] [Related]
18. Mutagenic analysis of Thr-232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases. Pagani S; Forlani F; Carpen A; Bordo D; Colnaghi R FEBS Lett; 2000 Apr; 472(2-3):307-11. PubMed ID: 10788632 [TBL] [Abstract][Full Text] [Related]
19. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese. Li H; Yang F; Kang X; Xia B; Jin C Biochemistry; 2008 Apr; 47(15):4377-85. PubMed ID: 18355042 [TBL] [Abstract][Full Text] [Related]