These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 454618)

  • 21. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis.
    Horowitz P; Criscimagna NL
    J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromogenic substrates for sulfurtransferases.
    Burrous MR; Westley J
    Anal Biochem; 1985 Aug; 149(1):66-71. PubMed ID: 3935005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate.
    Palenchar PM; Buck CJ; Cheng H; Larson TJ; Mueller EG
    J Biol Chem; 2000 Mar; 275(12):8283-6. PubMed ID: 10722656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiosulfate sulfurtransferase-like domain-containing 1 protein interacts with thioredoxin.
    Libiad M; Motl N; Akey DL; Sakamoto N; Fearon ER; Smith JL; Banerjee R
    J Biol Chem; 2018 Feb; 293(8):2675-2686. PubMed ID: 29348167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversible interconversion between sulfo and desulfo xanthine oxidase in a system containing rhodanese, thiosulfate, and sulfhydryl reagent.
    Nishino T; Usami C; Tsushima K
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1826-9. PubMed ID: 6572944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of cyanolysis of the rhodanese-thionitrobenzoate complex.
    Pensa B; Costa M; Cannella C; Pecci L; Cavallini D
    Ital J Biochem; 1980; 29(4):266-72. PubMed ID: 6938499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal.
    Weng L; Heinrikson RL; Westley J
    J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Site-directed mutagenesis of the active site loop of the rhodanese-like domain of the human molybdopterin synthase sulfurase MOCS3. Major differences in substrate specificity between eukaryotic and bacterial homologs.
    Krepinsky K; Leimkühler S
    FEBS J; 2007 Jun; 274(11):2778-87. PubMed ID: 17459099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study.
    Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG
    Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interaction of rhodanese with mitochondrial NADH dehydrogenase.
    Pagani S; Galante YM
    Biochim Biophys Acta; 1983 Jan; 742(2):278-84. PubMed ID: 6402020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of an Escherichia coli rhodanese.
    Alexander K; Volini M
    J Biol Chem; 1987 May; 262(14):6595-604. PubMed ID: 3553189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The inactivation of rhodanese by nitrite and inhibition by other anions in vitro.
    Alexander K; Procell LR; Kirby SD; Baskin SI
    J Biochem Toxicol; 1989; 4(1):29-33. PubMed ID: 2769694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic detoxification of cyanide: clues from Pseudomonas aeruginosa Rhodanese.
    Cipollone R; Ascenzi P; Tomao P; Imperi F; Visca P
    J Mol Microbiol Biotechnol; 2008; 15(2-3):199-211. PubMed ID: 18685272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains.
    Hänzelmann P; Dahl JU; Kuper J; Urban A; Müller-Theissen U; Leimkühler S; Schindelin H
    Protein Sci; 2009 Dec; 18(12):2480-91. PubMed ID: 19798741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid).
    Pensa B; Costa M; Pecci L; Cannella C; Cavallini D
    Biochim Biophys Acta; 1977 Oct; 484(2):368-74. PubMed ID: 911854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface changes and role of buried water molecules during the sulfane sulfur transfer in rhodanese from Azotobacter vinelandii: a fluorescence quenching and nuclear magnetic relaxation dispersion spectroscopic study.
    Fasano M; Orsale M; Melino S; Nicolai E; Forlani F; Rosato N; Cicero D; Pagani S; Paci M
    Biochemistry; 2003 Jul; 42(28):8550-7. PubMed ID: 12859202
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase.
    Horowitz P; Criscimagna NL
    Biochim Biophys Acta; 1982 Apr; 702(2):173-7. PubMed ID: 6952939
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced thioredoxin as a sulfur-acceptor substrate for rhodanese.
    Nandi DL; Westley J
    Int J Biochem Cell Biol; 1998 Sep; 30(9):973-7. PubMed ID: 9785461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral differences between rhodanese catalytic intermediates unrelated to enzyme conformation.
    Chow SF; Horowitz PM
    J Biol Chem; 1985 Aug; 260(17):9593-7. PubMed ID: 3860502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.