These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 4547201)

  • 1. Effects of the absence of extracellular Ca++ ions on negative and positive staircase phenomena in isolated muscle fibres of the frog.
    Cecchi G; Colomo F; Lombardi V
    Arch Fisiol; 1973 Jun; 70(1-2):39-41. PubMed ID: 4547201
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of diazepam on calcium translocation during physiological muscle fatigue.
    Bianchi CP; Narayan SR
    J Pharmacol Exp Ther; 1984 Oct; 231(1):197-205. PubMed ID: 6092601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro selective glycogen depletion of frog twitch and slow muscle fibres.
    Kiessling A; Pomrehn A
    Biomed Biochim Acta; 1989; 48(5-6):S455-8. PubMed ID: 2474290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of Ca in muscles hindered in contraction by D2O.
    Kállay N; Gombos-Gál E; Juhász-Bánhídi L; Tigyi-Sebes A
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(1-2):73-83. PubMed ID: 314217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of isolated bundles of frog myofibrils in Ca-buffered solutions [proceedings].
    Moisescu DG
    J Physiol; 1976 Dec; 263(1):161P-162P. PubMed ID: 1087647
    [No Abstract]   [Full Text] [Related]  

  • 7. [The role of extracellular calcium in regulating the contraction of the developing musculature in the frog Rana temporaria].
    Radziukevich TL
    Zh Evol Biokhim Fiziol; 1996; 32(3):284-91. PubMed ID: 9148615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of the free calcium change in single muscle fibres during contraction.
    Ashley CC; Moisescu DG
    J Physiol; 1973 May; 231(1):23P-25P. PubMed ID: 4715354
    [No Abstract]   [Full Text] [Related]  

  • 9. The ionic requirements for the development of contracture in isolated slow muscle fibres of the frog.
    Nasledov GA; Zachar J; Zacharová D
    Physiol Bohemoslov; 1966; 15(4):293-306. PubMed ID: 4224271
    [No Abstract]   [Full Text] [Related]  

  • 10. Effects of hypertonicity on resting and contracting frog skeletal muscles.
    Homsher E; Briggs FN; Wise RM
    Am J Physiol; 1974 Apr; 226(4):855-63. PubMed ID: 4545047
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of quinine on the isometric tension and intracellular calcium movements in single giant muscle fibres.
    Franciolini F
    Acta Physiol Hung; 1984; 63(2):147-51. PubMed ID: 6331068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscular contraction.
    Huxley AF
    J Physiol; 1974 Nov; 243(1):1-43. PubMed ID: 4449057
    [No Abstract]   [Full Text] [Related]  

  • 13. Electron microscopic autoradiographic localization of Ca in the muscle fibril.
    Kállay N; Tigyi-Sebes A
    Acta Biochim Biophys Acad Sci Hung; 1973; 8(4):267-73. PubMed ID: 4544705
    [No Abstract]   [Full Text] [Related]  

  • 14. Measurements of intracellular calcium during fatiguing stimulation in single Xenopus muscle fibres.
    Westerblad H; Allen DG; Lee JA
    Prog Clin Biol Res; 1989; 315():231-2. PubMed ID: 2798495
    [No Abstract]   [Full Text] [Related]  

  • 15. Bound potassium in muscle.
    Hummel Z
    Acta Biochim Biophys Acad Sci Hung; 1978; 13(3):211-6. PubMed ID: 314218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-relations of initial volume decrease and contraction in frog muscles.
    Schäffer B; Orkényi J
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(3):255-61. PubMed ID: 4546961
    [No Abstract]   [Full Text] [Related]  

  • 17. Distribution of intrafibrillar K and Na and autoradiographic investigation of the K-Na exchange due to direct stimulation.
    Kállay N; Tigyi-Sebes A
    Acta Biochim Biophys Acad Sci Hung; 1969; 4(1):71-8. PubMed ID: 5317069
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphorylation-dephosphorylation of the 18,000-dalton light chain of myosin during the contraction-relaxation cycle of frog muscle.
    Bárány K; Bárány M; Gillis JM; Kushmerick MJ
    J Biol Chem; 1979 May; 254(9):3617-23. PubMed ID: 107176
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of physostigmine on the excitation-contraction coupling of skeletal muscle fibres.
    Szücs G; Fuxreiter M; Sirkó E; Szállási A
    Acta Physiol Hung; 1983; 62(1):61-73. PubMed ID: 6316729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alteration of the voltage-dependence of the twitch tension in frog skeletal muscle fibres by a polyether, Bistramide A.
    Sauviat MP; Verbist JF
    Gen Physiol Biophys; 1993 Oct; 12(5):465-71. PubMed ID: 8181693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.