These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 454777)

  • 1. Uniform microporous biomaterials prepared by the Relamineform technique.
    White RA; White EW; Nelson RJ
    Biomater Med Devices Artif Organs; 1979; 7(1):127-32. PubMed ID: 454777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replamineform: a new process for preparing porous ceramic, metal, and polymer prosthetic materials.
    White RA; Weber JN; White EW
    Science; 1972 May; 176(4037):922-4. PubMed ID: 4402400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replamineform porous biomaterials for hard tissue implant applications.
    White EW; Weber JN; Roy DM; Owen EL; Chiroff RT; White RA
    J Biomed Mater Res; 1975 Jul; 9(4):23-7. PubMed ID: 1176505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental study of metallic bone and joint prostheses with plasma-sprayed ceramic coating].
    Huang GK; Cao MJ
    Zentralbl Chir; 1992; 117(3):171-7. PubMed ID: 1590032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue ingrowth of Replamineform implants.
    Chiroff RT; White EW; Weber KN; Roy DM
    J Biomed Mater Res; 1975 Jul; 9(4):29-45. PubMed ID: 1176509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo comparison of replamineform, Silastic, and bioelectric polyurethane arterial grafts.
    Hiratzka LF; Goeken JA; White RA; Wright CB
    Arch Surg; 1979 Jun; 114(6):698-702. PubMed ID: 454153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials for bone and joint replacement.
    Langer G
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(4):203-12. PubMed ID: 6624172
    [No Abstract]   [Full Text] [Related]  

  • 8. Properties of biomaterials.
    Lemons JE; Lucas LC
    J Arthroplasty; 1986; 1(2):143-7. PubMed ID: 3559583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface activities of bioactive glass, aluminum oxide, and titanium in a living environment.
    Gross U; Schmitz HJ; Strunz V
    Ann N Y Acad Sci; 1988; 523():211-26. PubMed ID: 3289453
    [No Abstract]   [Full Text] [Related]  

  • 10. Limitations of titanium dioxide and aluminum oxide as ossicular replacement materials: an evaluation of the effects of porosity on ceramic prostheses.
    Trabandt N; Brandes G; Wintermantel E; Lenarz T; Stieve M
    Otol Neurotol; 2004 Sep; 25(5):682-93. PubMed ID: 15353996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of the bone-porous biomaterial interface: elastic behavior.
    Moyle DD; Klawitter JJ; Hulbert SF
    J Biomed Mater Res; 1973; 7(3):363-82. PubMed ID: 4717960
    [No Abstract]   [Full Text] [Related]  

  • 12. [20 years aluminum oxide ceramics for medical applications].
    Willmann G
    Biomed Tech (Berl); 1994 Apr; 39(4):73-8. PubMed ID: 8018814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive glasses, aluminum oxide, and titanium. Biochemistry of the interface.
    Boyan B; Schepers E; Yamamuro T; Wilson J; Gross U; Reck R; Vast P; Steflik D; Tsai JR; Yamagami A
    Ann N Y Acad Sci; 1988; 523():262-7. PubMed ID: 3382126
    [No Abstract]   [Full Text] [Related]  

  • 14. Concept and material properties of a cementless hip prosthesis system with Al2O3 ceramic ball heads and wrought Ti-6Al-4V stems.
    Zweymüller K; Semlitsch M
    Arch Orthop Trauma Surg (1978); 1982; 100(4):229-36. PubMed ID: 7159194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomaterial optimization in total disc arthroplasty.
    Hallab N; Link HD; McAfee PC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S139-52. PubMed ID: 14560185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of fine surface structures on the osseo-integration of implants.
    Heimke G; Schulte W; d'Hoedt B; Griss P; Büsing CM; Stock D
    Int J Artif Organs; 1982 May; 5(3):207-12. PubMed ID: 7049965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a ceramic surface replacement for the hip. An experimental Sialon model.
    Clarke IC; Phillips W; McKellop H; Coster IR; Hedley A; Amstutz HC
    Biomater Med Devices Artif Organs; 1979; 7(1):111-26. PubMed ID: 454775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Research progress in tracheal prostheses].
    Lin HP; Cao ZA
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 May; 30(3):196-8. PubMed ID: 16929779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-energy CT and ceramic or titanium prostheses material reduce CT artifacts and provide superior image quality of total knee arthroplasty.
    Kasparek MF; Töpker M; Lazar M; Weber M; Kasparek M; Mang T; Apfaltrer P; Kubista B; Windhager R; Ringl H
    Knee Surg Sports Traumatol Arthrosc; 2019 May; 27(5):1552-1561. PubMed ID: 29881885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.