These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 454781)

  • 1. Interpenetrating polymer networks for biological applications.
    Dror M; Elsabee MZ; Berry GC
    Biomater Med Devices Artif Organs; 1979; 7(1):31-9. PubMed ID: 454781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-sensitive hydrogels based on interpenetrating polymer networks made of poly(N-isopropylacrylamide) and polyurethane.
    Cho SM; Kim BK
    J Biomater Sci Polym Ed; 2010; 21(8-9):1051-68. PubMed ID: 20507708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the effect of degree of hydrophilicity on tissue response of polyurethane interpenetrating polymer networks.
    Nair PD; Mohanty M; Rathinam K; Jayabalan M; Krishnamurthy VN
    Biomaterials; 1992; 13(8):537-42. PubMed ID: 1633227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable growth of interpenetrating or random copolymer networks.
    Chatterjee R; Biswas S; Yashin VV; Aizenberg M; Aizenberg J; Balazs AC
    Soft Matter; 2021 Aug; 17(30):7177-7187. PubMed ID: 34268552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High modulus hydrogels for ophthalmic and related biomedical applications.
    Bhamra TS; Tighe BJ; Li J
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1645-1653. PubMed ID: 30296363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The novel semi-biodegradable interpenetrating polymer networks based on urethane-dimethacrylate and epoxy-polyester components as alternative biomaterials.
    Barszczewska-Rybarek IM; Jaszcz K; Jurczyk S; Chladek G
    Acta Bioeng Biomech; 2015; 17(3):13-22. PubMed ID: 26687077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic, superporous hydrogel hybrids of polyacrylamide and sodium alginate.
    Omidian H; Rocca JG; Park K
    Macromol Biosci; 2006 Sep; 6(9):703-10. PubMed ID: 16967483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization.
    Lligadas G; Ronda JC; Galià M; Cádiz V
    Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "On-off" thermocontrol of solute transport. I. Temperature dependence of swelling of N-isopropylacrylamide networks modified with hydrophobic components in water.
    Bae YH; Okano T; Kim SW
    Pharm Res; 1991 Apr; 8(4):531-7. PubMed ID: 1871053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogel-elastomer composite biomaterials: 3. Effects of gelatin molecular weight and type on the preparation and physical properties of interpenetrating polymer networks.
    Peng HT; Martineau L; Shek PN
    J Mater Sci Mater Med; 2008 Mar; 19(3):997-1007. PubMed ID: 17665128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heparinizable segmented polyurethanes containing poly-amidoamine blocks.
    Tanzi MC; Levi M
    J Biomed Mater Res; 1989 Aug; 23(8):863-81. PubMed ID: 2777830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical properties of biomedical hydrogel for application as microchannel elastomer.
    Ige EO; Raj MK; Dare AA; Chakraborty S
    J Mech Behav Biomed Mater; 2018 Jan; 77():217-224. PubMed ID: 28946052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanical and microscopic aspects of the deformation and fracture of a poly (ether urethane-urea) spun arterial prosthesis.
    Williams DF; Zhong SP; Doherty PJ
    Biomed Mater Eng; 1991; 1(2):75-90. PubMed ID: 1364633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel-elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties.
    Peng HT; Martineau L; Shek PN
    J Mater Sci Mater Med; 2007 Jun; 18(6):975-86. PubMed ID: 17243001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical and physical characterization of a novel poly(carbonate urea) urethane surface with protein crosslinker sites.
    Phaneuf MD; Quist WC; LoGerfo FW; Szycher M; Dempsey DJ; Bide MJ
    J Biomater Appl; 1997 Oct; 12(2):100-20. PubMed ID: 9399137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network.
    Kurisawa M; Terano M; Yui N
    J Biomater Sci Polym Ed; 1997; 8(9):691-708. PubMed ID: 9257182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials.
    Wang R; Sing MK; Avery RK; Souza BS; Kim M; Olsen BD
    Acc Chem Res; 2016 Dec; 49(12):2786-2795. PubMed ID: 27993006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release.
    Xu Q; Huang W; Jiang L; Lei Z; Li X; Deng H
    Carbohydr Polym; 2013 Sep; 97(2):565-70. PubMed ID: 23911486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.