These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 4548158)

  • 1. Fatigue in frog single muscle fibres.
    Vergara JL; Rapoport SI
    Nature; 1974 Dec; 252(5485):727-8. PubMed ID: 4548158
    [No Abstract]   [Full Text] [Related]  

  • 2. Fatigue and posttetanic potentiation in single muscle fibers of the frog.
    Vergara JL; Rapoprot SI; Nassar-Gentina V
    Am J Physiol; 1977 May; 232(5):C185-90. PubMed ID: 300990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hypertonicity on resting and contracting frog skeletal muscles.
    Homsher E; Briggs FN; Wise RM
    Am J Physiol; 1974 Apr; 226(4):855-63. PubMed ID: 4545047
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of excitation-contraction uncoupling by stretch and hypertonicity on metabolism and tension in single frog muscle fibers.
    Rapoport SI; Nassar-Gentina V; Passonneau JV
    J Gen Physiol; 1982 Jul; 80(1):73-81. PubMed ID: 6981681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hypertonic solutions and "glycerol treatment" on calcium and magnesium movements of frog skeletal muscle.
    Bianchi CP; Bolton TC
    J Pharmacol Exp Ther; 1974 Mar; 188(3):536-52. PubMed ID: 4544587
    [No Abstract]   [Full Text] [Related]  

  • 6. Uptake and retrograde transport of horseradish peroxidase in frog sartorius nerve in vitro.
    Litchy WJ
    Brain Res; 1973 Jun; 56():377-81. PubMed ID: 4541419
    [No Abstract]   [Full Text] [Related]  

  • 7. On the inhibition of muscle contraction caused by exposure to hypertonic solutions.
    Miyamoto M; Hubbard JI
    J Gen Physiol; 1972 Jun; 59(6):689-700. PubMed ID: 4537242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hypertonic solutions on calcium transients in frog twitch muscle fibres.
    Parker I; Zhu PH
    J Physiol; 1987 Feb; 383():615-27. PubMed ID: 3498821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium content and exchange in frog skeletal muscle.
    Kirby AC; Lindley BD; Picken JR
    J Physiol; 1975 Dec; 253(1):37-52. PubMed ID: 1082027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths.
    Moss RL
    J Physiol; 1979 Jul; 292():177-92. PubMed ID: 314975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-tetanic potentiation and inhibition in single fibres isolated from frog semitendinosus muscle.
    López E
    Jpn J Physiol; 1982; 32(1):103-19. PubMed ID: 6978961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromechanical uncoupling of frog skeletal muscle by possible change in sarcoplasmic reticulum content.
    Sperelakis N; Valle R; Orozco C; Martínez-Palomo A; Rubio R
    Am J Physiol; 1973 Oct; 225(4):793-800. PubMed ID: 4542708
    [No Abstract]   [Full Text] [Related]  

  • 13. The intracellular pH of frog skeletal muscle: its regulation in hypertonic solutions.
    Abercrombie RF; Roos A
    J Physiol; 1983 Dec; 345():189-204. PubMed ID: 6420547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance imaging of isolated skeletal muscles. Osmotic influence.
    Yoshioka H; Itai Y
    Invest Radiol; 1996 Jun; 31(6):359-63. PubMed ID: 8761869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of local anaesthetics on the relationship between charge movements and contractile thresholds in frog skeletal muscle.
    Huang CL
    J Physiol; 1981 Nov; 320():381-91. PubMed ID: 6976433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium channel inactivation in frog (Rana pipiens and Rana moctezuma) skeletal muscle fibres.
    Cota G; Nicola Siri L; Stefani E
    J Physiol; 1984 Sep; 354():99-108. PubMed ID: 6090655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na-Ca exchange studies in frog phasic muscle cells.
    Castillo E; Gonzalez-Serratos H; Rasgado-Flores H; Rozycka M
    Ann N Y Acad Sci; 1991; 639():554-7. PubMed ID: 1785882
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of verapamil on excitation-contraction coupling in frog sartorius muscle.
    Bondi AY
    J Pharmacol Exp Ther; 1978 Apr; 205(1):49-57. PubMed ID: 24733
    [No Abstract]   [Full Text] [Related]  

  • 19. The dependence of the latency relaxation on sarcomere length and other characteristics of isolated muscle fibres.
    Mulieri LA
    J Physiol; 1972 Jun; 223(2):333-54. PubMed ID: 4537709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Appropriate conditions to record activation of fast Ca2+ channels in frog skeletal muscle (Rana pipiens).
    García J; Stefani E
    Pflugers Arch; 1987 May; 408(6):646-8. PubMed ID: 2439988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.