These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 4548380)

  • 41. Neuronal degeneration in the pineal ganglion during the post-hatching development of the domestic fowl.
    Sato T; Ebisawa S; Wake K
    Cell Tissue Res; 1988 Oct; 254(1):25-30. PubMed ID: 3197082
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative investigations of the neuronal apparatus in the pineal organ and retina of the rainbow trout: immunocytochemical demonstration of neurofilament 200-kDa and neuropeptide Y, and tracing with DiI.
    Blank H; Müller B; Korf H
    Cell Tissue Res; 1997 Jun; 288(3):417-25. PubMed ID: 9134855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Early receptor potential from the pineal photoreceptor.
    Morita Y; Dodt E
    Pflugers Arch; 1975; 354(3):273-80. PubMed ID: 1078725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of slow potentials from the frog epiphysis (Rana esculenta); possible mass photoreceptor potentials.
    Donley CS; Meissl H
    Vision Res; 1979; 19(12):1343-9. PubMed ID: 316944
    [No Abstract]   [Full Text] [Related]  

  • 45. Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana.
    Opdam R; Kemali M; Nieuwenhuys R
    J Comp Neurol; 1976 Feb; 165(3):307-32. PubMed ID: 1083857
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolutionary history of the hybridogenetic hybrid frog Rana esculenta as deduced from mtDNA analyses.
    Spolsky C; Uzzell T
    Mol Biol Evol; 1986 Jan; 3(1):44-56. PubMed ID: 2832687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Studies on the presence of vasopressin, oxytocin and vasotocin in the pineal gland, subcommissural organ and fetal pituitary gland: failure to demonstrate vasotocin in mammals.
    Dogterom J; Snijdewint FG; Pévet P; Swaab DF
    J Endocrinol; 1980 Jan; 84(1):115-23. PubMed ID: 6965701
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Acetylcholinesterase-positive neurons in the pineal and parapineal organs of the rainbow trout, Salmo gairdneri (with special reference to the pineal tract).
    Korf HW
    Cell Tissue Res; 1974; 155(4):475-89. PubMed ID: 4614911
    [No Abstract]   [Full Text] [Related]  

  • 49. Electrophysiological recordings of an extraocular and extrapineal photo-reception in the frog encephalon.
    Cadusseau J; Galand G
    Brain Res; 1981 Aug; 219(2):439-44. PubMed ID: 6973383
    [No Abstract]   [Full Text] [Related]  

  • 50. Cerebrospinal fluid-contacting neurons, sensory pinealocytes and Landolt's clubs of the retina as revealed by means of an electron-microscopic immunoreaction against opsin.
    Vigh B; Vigh-Teichmann I; Röhlich P; Oksche A
    Cell Tissue Res; 1983; 233(3):539-48. PubMed ID: 6226359
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic control of LDH isozymes in the Rana esculenta complex.
    Vogel P; Chen PS
    Experientia; 1976 Mar; 32(3):304-7. PubMed ID: 1082820
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of dehydration on activity changes of pineal gland and subcommissural organ cells in Rana temporaria L. in annual cycle.
    Lach H; Dziubek K; Krawczyk S; Szaroma W
    Acta Morphol Hung; 1983; 31(4):301-8. PubMed ID: 6421092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrastructure and functional aspects of the nucleus infundibularis ventralis in the green frog, Rana esculenta.
    Peute J; Meij JC
    Z Zellforsch Mikrosk Anat; 1973 Nov; 144(2):191-217. PubMed ID: 4361612
    [No Abstract]   [Full Text] [Related]  

  • 54. Actual problems of the cerebrospinal fluid-contacting neurons.
    Vigh B; Vigh-Teichmann I
    Microsc Res Tech; 1998 Apr; 41(1):57-83. PubMed ID: 9550137
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of pineal and retinal photoreceptors by calcium histochemistry.
    Szepessy Z; Fejér Z; Szél A; Manzano a Silva MJ; Vígh B
    Neurobiology (Bp); 2001; 9(1):63-6. PubMed ID: 11558942
    [No Abstract]   [Full Text] [Related]  

  • 56. [Gene diffusion in hybrid populations of green frogs Rana esculenta L., 1758 complex (Amphibia, Ranidae) from the Dnepr Basin].
    Mezhzherin SV; Morozov-Leonov SIu
    Genetika; 1997 Mar; 33(3):358-64. PubMed ID: 9244766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A light-microscopic study on pineal organ structure and innervation in the catfish, Heteropneustes fossilis.
    Joy KP; Agha AK
    J Hirnforsch; 1993; 34(4):545-53. PubMed ID: 8308267
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seasonal variations in the daily rhythm of melatonin and NAT activity in the Harderian gland, retina, pineal gland, and serum of the green frog, Rana esculenta.
    d'Istria M; Monteleone P; Serino I; Chieffi G
    Gen Comp Endocrinol; 1994 Oct; 96(1):6-11. PubMed ID: 7843568
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in the activity of the ependyma in the infundibular recess of the brain of Rana esculenta L. in the annual cycle.
    Lach H; Dziubek K; Krawczyk S
    Acta Biol Acad Sci Hung; 1977; 28(4):405-13. PubMed ID: 308755
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Degeneration of the pineal nerve of Rana esculenta L. following frontal-organ proximal and distal transection].
    Böttger WV; Böttger EM
    Z Zellforsch Mikrosk Anat; 1973; 136(3):365-91. PubMed ID: 4346506
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.