These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 455084)

  • 1. Effects of intranasal irrigation with mitotic inhibitors on olfactory behavior and biochemistry in mice.
    Harding JW; Wright JW
    Brain Res; 1979 May; 168(1):31-41. PubMed ID: 455084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible effects of olfactory nerve section on behavior and biochemistry in mice.
    Harding JW; Wright JW
    Brain Res Bull; 1979; 4(1):17-22. PubMed ID: 89004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denervation of the primary olfactory pathway in mice. V. Long-term effect of intranasal ZnSO4 irrigation on behavior, biochemistry and morphology.
    Harding JW; Getchell TV; Margolis FL
    Brain Res; 1978 Jan; 140(2):271-85. PubMed ID: 626892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The subcellular distribution of carnosine, carnosine synthetase, and carnosinase in mouse olfactory tissues.
    Harding JW; O'Fallon JV
    Brain Res; 1979 Sep; 173(1):99-109. PubMed ID: 487087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denervation in the primary olfactory pathway of mice. IV. Biochemical and morphological evidence for neuronal replacement following nerve section.
    Harding J; Graziadei PP; Monti Graziadei GA; Margolis FL
    Brain Res; 1977 Aug; 132(1):11-28. PubMed ID: 890470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does intranasal application of zinc sulfate produce anosmia in the mouse? An olfactometric and anatomical study.
    McBride K; Slotnick B; Margolis FL
    Chem Senses; 2003 Oct; 28(8):659-70. PubMed ID: 14627534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological study of the effects of intranasal zinc sulfate irrigation on the mouse olfactory epithelium and olfactory bulb.
    Burd GD
    Microsc Res Tech; 1993 Feb; 24(3):195-213. PubMed ID: 8431603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo visualization of olfactory pathophysiology induced by intranasal cadmium instillation in mice.
    Czarnecki LA; Moberly AH; Rubinstein T; Turkel DJ; Pottackal J; McGann JP
    Neurotoxicology; 2011 Aug; 32(4):441-9. PubMed ID: 21443902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Head-portion exposure to low-level X-rays reduces isolation-induced aggression of mouse, and involvement of the olfactory carnosine in modulation of the radiation effects.
    Miyachi Y; Yamada T
    Behav Brain Res; 1996 Nov; 81(1-2):135-40. PubMed ID: 8950009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denervation in the primary olfactory pathway of mice. III. Effect on enzymes of carnosine metabolism.
    Harding J; Margolis FL
    Brain Res; 1976 Jul; 110(2):351-60. PubMed ID: 938948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of intranasal zinc sulfate treatment on odor-mediated behavior and on odor-induced metabolic activity in the olfactory bulbs of neonatal rats.
    Stewart WB; Greer CA; Teicher MH
    Brain Res; 1983 Jun; 284(2-3):247-59. PubMed ID: 6871726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intranasal administration of rotenone in mice attenuated olfactory functions through the lesion of dopaminergic neurons in the olfactory bulb.
    Sasajima H; Miyazono S; Noguchi T; Kashiwayanagi M
    Neurotoxicology; 2015 Dec; 51():106-15. PubMed ID: 26493152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does intranasal application of zinc sulfate produce anosmia in the rat?
    Slotnick B; Glover P; Bodyak N
    Behav Neurosci; 2000 Aug; 114(4):814-29. PubMed ID: 10959540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of chronic low-level copper exposure on ultrastructure of the olfactory system in rainbow trout (Oncorhynchus mykiss).
    Julliard AK; Saucier D; Astic L
    Histol Histopathol; 1993 Oct; 8(4):655-72. PubMed ID: 8305817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimitotic drugs that enhance neuronal survival in olfactory bulb cell cultures.
    Burry RW
    Brain Res; 1983 Feb; 261(2):261-75. PubMed ID: 6219730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carnosine-, calcitonin gene-related peptide- and tyrosine hydroxylase-immunoreactivity in the mouse olfactory bulb following peripheral denervation.
    Biffo S; DeLucia R; Mulatero B; Margolis F; Fasolo A
    Brain Res; 1990 Oct; 528(2):353-7. PubMed ID: 1980226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of olfactory Schwann cells to intranasal zinc sulfate irrigation.
    Chuah MI; Tennent R; Jacobs I
    J Neurosci Res; 1995 Nov; 42(4):470-8. PubMed ID: 8568933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axoplasmic transport of carnosine (β-alanyl-L-histidine) in the mouse olfactory pathway.
    Margolis FL; Grillo M
    Neurochem Res; 1977 Oct; 2(5):507-19. PubMed ID: 24272242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory neurotoxicology: use of the olfactory system in the assessment of toxicity.
    Hastings L
    Neurotoxicol Teratol; 1990; 12(5):455-9. PubMed ID: 2247032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of mitotic activity and synchronization of cell development in olfactory epithelium.
    Lidow MS; Kleene SJ; Gesteland RC
    Brain Res; 1986 Aug; 393(2):145-62. PubMed ID: 3488797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.