BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 4551150)

  • 21. The novel insulinotropic mechanism of pimobendan: direct enhancement of the exocytotic process of insulin secretory granules by increased Ca2+ sensitivity in beta-cells.
    Fujimoto S; Ishida H; Kato S; Okamoto Y; Tsuji K; Mizuno N; Ueda S; Mukai E; Seino Y
    Endocrinology; 1998 Mar; 139(3):1133-40. PubMed ID: 9492047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphometric studies of secretory granule distribution and association with microtubules in beta-cells of rat islets during glucose stimulation.
    Yorde DE; Kalkhoff RK
    Diabetes; 1987 Aug; 36(8):905-13. PubMed ID: 3297885
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A morphometric study of the secretory process in the endocrine pancreas of the foetal rat.
    Perrier-Barta H
    Cell Tissue Res; 1983; 229(3):651-71. PubMed ID: 6340832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Elevated beta-cell calmodulin produces a unique insulin secretory defect in transgenic mice.
    Epstein PN; Ribar TJ; Decker GL; Yaney G; Means AR
    Endocrinology; 1992 Mar; 130(3):1387-93. PubMed ID: 1371447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The priming effect of glucose on insulin release does not involve redistribution of secretory granules within the pancreatic B-cell.
    Borg LA; Westberg M; Grill V
    Mol Cell Endocrinol; 1988 Apr; 56(3):219-25. PubMed ID: 3286324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytology of beta-cells in rabbit pancreas pieces incubated in vitro; Effects of glucose and tolbutamide.
    Findlay JA; Gill JR; Irvine G; Lever JD; Randle PJ
    Diabetologia; 1968 Jun; 4(3):150-60. PubMed ID: 4902711
    [No Abstract]   [Full Text] [Related]  

  • 27. Microtubules and beta cell secretion.
    Lacy PE; Malaisse WJ
    Recent Prog Horm Res; 1973; 29():199-228. PubMed ID: 4584365
    [No Abstract]   [Full Text] [Related]  

  • 28. Somatostatin inhibition of glucose-, tolbutamide-, theophylline, cytochalasin B-, and calcium-stimulated insulin release in monolayer cultures of rat endocrine pancreas.
    Fujimoto WY
    Endocrinology; 1975 Dec; 97(6):1494-500. PubMed ID: 1107017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of inositol trisphosphate receptor subtype 3 to insulin and somatostatin secretory granules and regulation of expression in islets and insulinoma cells.
    Blondel O; Moody MM; Depaoli AM; Sharp AH; Ross CA; Swift H; Bell GI
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7777-81. PubMed ID: 7914371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of protons in glucose-induced stimulus-secretion coupling in pancreatic islet B cells.
    Pace CS; Tarvin JT; Smith JS
    Kroc Found Ser; 1981; 15():483-512. PubMed ID: 6281398
    [No Abstract]   [Full Text] [Related]  

  • 31. The relationship of intracytoplasmic movement of beta granules to insulin release in monolayer-cultured pancreatic beta-cells.
    Kanazawa Y; Kawazu S; Ikeuchi M; Kosaka K
    Diabetes; 1980 Dec; 29(12):953-9. PubMed ID: 7002671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations in pancreatic beta cells induced by cyclizine.
    Hruban Z; Rubenstein AH; Slesers A
    Lab Invest; 1972 Mar; 26(3):270-7. PubMed ID: 4401386
    [No Abstract]   [Full Text] [Related]  

  • 33. Role of microtubules in the phasic pattern of insulin release.
    Malaisse WJ; Malaisse-Lagae F; Van Obberghen E; Somers G; Devis G; Ravazzola M; Orci L
    Ann N Y Acad Sci; 1975 Jun; 253():630-52. PubMed ID: 1096725
    [No Abstract]   [Full Text] [Related]  

  • 34. [The functional behaviour of zinc and insulin contained in the pancreatic beta-cells of rats].
    Engelbart K; Kief H
    Virchows Arch B Cell Pathol; 1970; 4(4):294-302. PubMed ID: 4190078
    [No Abstract]   [Full Text] [Related]  

  • 35. Microtubule assembly and the intracellular transport of secretory granules in pancreatic islets.
    Pipeleers DG; Pipeleers-Marichal MA; Kipnis DM
    Science; 1976 Jan; 191(4222):88-90. PubMed ID: 1108194
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Subcellular localization of the alterations in phosphatidylinositol metabolism following glucose-induced insulin release from rat pancreatic islets.
    Clements RS; Rhoten WB; Starnes WR
    Diabetes; 1977 Dec; 26(12):1109-16. PubMed ID: 338403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets.
    Li G; Rungger-Brändle E; Just I; Jonas JC; Aktories K; Wollheim CB
    Mol Biol Cell; 1994 Nov; 5(11):1199-213. PubMed ID: 7865885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hypothesis: single and chain release of insulin secretory granules is related to anionic transport at exocytotic sites.
    Orci L; Malaisse W
    Diabetes; 1980 Nov; 29(11):943-4. PubMed ID: 7000591
    [No Abstract]   [Full Text] [Related]  

  • 39. Role of microtubules in the synthesis, conversion, and release of (pro)insulin. A biochemical and radioautographic study in rat islets.
    Malaisse-Lagae F; Amherdt M; Ravazzola M; Sener A; Hutton JC; Orci L; Malaisse WJ
    J Clin Invest; 1979 Jun; 63(6):1284-96. PubMed ID: 376557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of annexin-I in glucose-induced insulin secretion in rat pancreatic islets.
    Ohnishi M; Tokuda M; Masaki T; Fujimura T; Tai Y; Itano T; Matsui H; Ishida T; Konishi R; Takahara J
    Endocrinology; 1995 Jun; 136(6):2421-6. PubMed ID: 7750463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.