BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 4551614)

  • 1. Genetic evidence for "Darwinian" selection at the molecular level. 3. The effect of the suppressive factor on nuclearly and cytoplasmically inherited chloramphenicol resistance in S. cerevisiae.
    Rank GH; Bech-Hansen NT
    Can J Microbiol; 1972 Jan; 18(1):1-7. PubMed ID: 4551614
    [No Abstract]   [Full Text] [Related]  

  • 2. Recombination in 3-factor crosses of cytoplasmically inherited antibiotic-resistance mitochondrial markers in S. cerevisiae.
    Rank GH
    Heredity (Edinb); 1973 Jun; 30(3):265-71. PubMed ID: 4578958
    [No Abstract]   [Full Text] [Related]  

  • 3. Biogenesis of mitochondria 34. The synergistic interaction of nuclear and mitocohondrial mutations to produce resistance to high levels of mikamycin in Saccharomyces cerevisiae.
    Howell N; Molloy PL; Linnane AW; Lukins HB
    Mol Gen Genet; 1974; 128(1):43-54. PubMed ID: 4595781
    [No Abstract]   [Full Text] [Related]  

  • 4. Ultrastructural changes in mitochondria of zygotes in Saccharomyces cerevisiae.
    Smith DG; Wilkie D; Srivastava KC
    Microbios; 1972 Dec; 6(24):231-8. PubMed ID: 4121433
    [No Abstract]   [Full Text] [Related]  

  • 5. The segregation of mitochondrial genes in yeast. II. Analysis of zygote pedigrees of drug-resistant X drug-sensitive crosses.
    Forster JL; Kleese RA
    Mol Gen Genet; 1975 Sep; 139(4):341-55. PubMed ID: 1102946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of mitochondrial resistance to tetracycline in Saccharomyces cerevisiae.
    Hughes AR; Wilkie D
    Heredity (Edinb); 1972 Feb; 28(1):117-27. PubMed ID: 4554286
    [No Abstract]   [Full Text] [Related]  

  • 7. Selection of high ethanol-yielding Saccharomyces. II. Genetics of ethanol tolerance.
    Ismail AA; Ali AM
    Folia Microbiol (Praha); 1971; 16(5):350-4. PubMed ID: 5125363
    [No Abstract]   [Full Text] [Related]  

  • 8. Genetic evidence for 'Darwinian' selection at the molecular level. I. The effect of the suppressive factor on cytoplasmically-inherited erythromycin-resistance in Saccharomyces cerevisiae.
    Rank GH
    Can J Genet Cytol; 1970 Mar; 12(1):129-36. PubMed ID: 5487917
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of carbon source on the replication and transmission of yeast mitochondrial genomes.
    Goldthwaite CD; Cryer DR; Marmur J
    Mol Gen Genet; 1974; 133(2):87-104. PubMed ID: 4614066
    [No Abstract]   [Full Text] [Related]  

  • 10. Two cytoplasmically inherited chloramphenicol resistance loci in yeast (Saccharomyces cerevisiae).
    Kleese RA; Grotbeck RC; Snyder JR
    Can J Genet Cytol; 1972 Sep; 14(3):713-5. PubMed ID: 4569292
    [No Abstract]   [Full Text] [Related]  

  • 11. Mitochondrial genetics. IV. Allelism and mapping studies of oligomycin resistant mutants in S. cerevisiae.
    Avner PR; Coen D; Dujon B; Slonimski PP
    Mol Gen Genet; 1973 Sep; 125(1):9-52. PubMed ID: 4590266
    [No Abstract]   [Full Text] [Related]  

  • 12. Cytoplasmically inherited ethidium bromide resistance in suppressive petites of Saccharomyces cerevisiae.
    Bech-Hansen NT; Rank GH
    Can J Genet Cytol; 1973 Sep; 15(3):381-7. PubMed ID: 4587084
    [No Abstract]   [Full Text] [Related]  

  • 13. Mitochondrial antibiotic resistance in yeast: ribosomal mutants resistant to chloramphenicol, erythromycin and spiramycin.
    Grivell LA; Netter P; Borst P; Slonimski PP
    Biochim Biophys Acta; 1973 Jun; 312(2):358-67. PubMed ID: 4579232
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of antibiotics on the transmission of mitochondrial factors in Saccharomyces cerevisiae.
    Waxman MF; Eaton N; Wilkie D
    Mol Gen Genet; 1973 Dec; 127(4):277-84. PubMed ID: 4594000
    [No Abstract]   [Full Text] [Related]  

  • 15. Physical and genetic organization of petite and grande yeast mitochondrial DNA.I. Studies by RNA-DNA hybridization.
    Fukuhara H; Faye G; Michel F; Lazowska J; Deutsch J; Bolotin-Fukuhara M; slonimski PP
    Mol Gen Genet; 1974 May; 130(3):215-38. PubMed ID: 4602260
    [No Abstract]   [Full Text] [Related]  

  • 16. Pleiotropy of cytoplasmically and nuclearly inherited resistance to inhibitors of mitochondrial function in Saccharomyces cerevisiae.
    Rank GH
    Can J Microbiol; 1974 Jan; 20(1):9-12. PubMed ID: 4595738
    [No Abstract]   [Full Text] [Related]  

  • 17. Oligomycin sensitivity of ATPase studied as a function of mitochondrial biogenesis, using mitochondrially determined oligomycin-resistant mutants of Saccharomyces cerevisiae.
    Somlo M; Avner PR; Cosson J; Dujon B; Krupa M
    Eur J Biochem; 1974 Mar; 42(2):439-45. PubMed ID: 4275250
    [No Abstract]   [Full Text] [Related]  

  • 18. Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol.
    Williamson DH; Maroudas NG; Wilkie D
    Mol Gen Genet; 1971; 111(3):209-23. PubMed ID: 5563934
    [No Abstract]   [Full Text] [Related]  

  • 19. Biogenesis of mitochondria. 23. The biochemical and genetic characteristics of two different oligomycin resistant mutants of Saccharomyces cerevisiae under the influence of cytoplasmic genetic modification.
    Mitchell CH; Bunn CL; Lukins HB; Linnane AW
    J Bioenerg; 1973 Jan; 4(1):161-77. PubMed ID: 4268691
    [No Abstract]   [Full Text] [Related]  

  • 20. On the origin of mitochondrial mutants: evidence for intracellular selection of mitochondria in the origin of antibiotic-resistant cells in yeast.
    Birky CW
    Genetics; 1973 Jul; 74(3):421-32. PubMed ID: 4582949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.