These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 4551616)
1. Thermal stability of the deoxyribonucleic acid hybrids between the proteolytic strains of Clostridium botulinum and Clostridium sporogenes. Wu JI; Riemann H; Lee WH Can J Microbiol; 1972 Jan; 18(1):97-9. PubMed ID: 4551616 [No Abstract] [Full Text] [Related]
2. The genetic relatedness of proteolytic Clostridium botulinum strains. Lee WH; Riemann H J Gen Microbiol; 1970 Nov; 64(1):85-90. PubMed ID: 4930571 [No Abstract] [Full Text] [Related]
3. Clostridium sporogenes isolates and their relationship to C. botulinum based on deoxyribonucleic acid reassociation. Nakamura S; Okado I; Nakashio S; Nishida S J Gen Microbiol; 1977 Jun; 100(2):395-401. PubMed ID: 330814 [TBL] [Abstract][Full Text] [Related]
4. Taxonomic relationships among Clostridium novyi Types A and B, Clostridium haemolyticum and Clostridium botulinum type C. Nakamura S; Kimura I; Yamakawa K; Nishida S J Gen Microbiol; 1983 May; 129(5):1473-9. PubMed ID: 6352856 [TBL] [Abstract][Full Text] [Related]
5. Clostridium sporogenes PA 3679 and its uses in the derivation of thermal processing schedules for low-acid shelf-stable foods and as a research model for proteolytic Clostridium botulinum. Brown JL; Tran-Dinh N; Chapman B J Food Prot; 2012 Apr; 75(4):779-92. PubMed ID: 22488072 [TBL] [Abstract][Full Text] [Related]
6. Cloning of a DNA sequence unique to Clostridium botulinum group I by selective hybridization. McKinney MW; Levett PN; Haylock RW J Clin Microbiol; 1993 Jul; 31(7):1845-9. PubMed ID: 8349762 [TBL] [Abstract][Full Text] [Related]
7. Rejection of Clostridium putrificum and conservation of Clostridium botulinum and Clostridium sporogenes-Opinion 69. Judicial Commission of the International Committee on Systematic Bacteriology. Int J Syst Bacteriol; 1999 Jan; 49 Pt 1():339. PubMed ID: 10028279 [TBL] [Abstract][Full Text] [Related]
8. Characterization of clostridia by gas chromatography differentiation of species by trimethylsilyl derivatives of whole-cell hydrolysates. Farshy DC; Moss CW Appl Microbiol; 1970 Jul; 20(1):78-84. PubMed ID: 4318575 [TBL] [Abstract][Full Text] [Related]
9. Numerical taxonomy of Clostridium botulinum and Clostridium sporogenes strains, and their susceptibilities to induced lysins and to mitomycin C. Kiritani K; Mitsui N; Nakamura S; Nishida S Jpn J Microbiol; 1973 Sep; 17(5):361-72. PubMed ID: 4587762 [No Abstract] [Full Text] [Related]
10. Meta-analysis of D-values of proteolytic Clostridium botulinum and its surrogate strain Clostridium sporogenes PA 3679. Diao MM; André S; Membré JM Int J Food Microbiol; 2014 Mar; 174():23-30. PubMed ID: 24448274 [TBL] [Abstract][Full Text] [Related]
11. Reinvestigation of the taxonomy of Clostridium bifermentans and Clostridium sordellii. Nakamura S; Shimamura T; Hayashi H; Nishida S J Med Microbiol; 1975 May; 8(2):299-309. PubMed ID: 1142417 [TBL] [Abstract][Full Text] [Related]
12. Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. Johnson JL; Francis BS J Gen Microbiol; 1975 Jun; 88(2):229-44. PubMed ID: 168308 [TBL] [Abstract][Full Text] [Related]
13. Identification of Clostridium botulinum with API 20 A, Rapid ID 32 A and RapID ANA II. Lindström MK; Jankola HM; Hielm S; Hyytiä EK; Korkeala HJ FEMS Immunol Med Microbiol; 1999 Jul; 24(3):267-74. PubMed ID: 10397310 [TBL] [Abstract][Full Text] [Related]
14. Correlation of toxic and non-toxic strains of Clostridium botulinum by DNA composition and homology. Lee WH; Riemann H J Gen Microbiol; 1970 Jan; 60(1):117-23. PubMed ID: 4922761 [No Abstract] [Full Text] [Related]
15. Evaluation of the use of the bioMerieux Rapid ID32 A for the identification of Clostridium botulinum. Brett MM Lett Appl Microbiol; 1998 Jan; 26(1):81-4. PubMed ID: 9489040 [TBL] [Abstract][Full Text] [Related]
16. Differentiation between types and strains of Clostridium botulinum by riboprinting. Skinner GE; Gendel SM; Fingerhut GA; Solomon HA; Ulaszek J J Food Prot; 2000 Oct; 63(10):1347-52. PubMed ID: 11041133 [TBL] [Abstract][Full Text] [Related]
17. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing. Schill KM; Wang Y; Butler RR; Pombert JF; Reddy NR; Skinner GE; Larkin JW Appl Environ Microbiol; 2016 Jan; 82(1):384-93. PubMed ID: 26519392 [TBL] [Abstract][Full Text] [Related]
18. Discrimination of Human Pathogen Clostridium Species Especially of the Heterogeneous C. sporogenes and C. botulinum by MALDI-TOF Mass Spectrometry. Schaumann R; Dallacker-Losensky K; Rosenkranz C; Genzel GH; Stîngu CS; Schellenberger W; Schulz-Stübner S; Rodloff AC; Eschrich K Curr Microbiol; 2018 Nov; 75(11):1506-1515. PubMed ID: 30120528 [TBL] [Abstract][Full Text] [Related]
19. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy. Weigand MR; Pena-Gonzalez A; Shirey TB; Broeker RG; Ishaq MK; Konstantinidis KT; Raphael BH Appl Environ Microbiol; 2015 Aug; 81(16):5420-9. PubMed ID: 26048939 [TBL] [Abstract][Full Text] [Related]
20. Multilocus enzyme electrophoresis of Clostridium argentinense (Clostridium botulinum toxin type G) and phenotypically similar asaccharolytic clostridia. Altwegg M; Hatheway CL J Clin Microbiol; 1988 Nov; 26(11):2447-9. PubMed ID: 3069865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]