These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4552227)

  • 1. Directed evolution of metabolic pathways in microbial populations. I. Modification of the acid phosphatase pH optimum in S. cerevisiae.
    Francis JC; Hansche PE
    Genetics; 1972 Jan; 70(1):59-73. PubMed ID: 4552227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Evolution of Metabolic Pathways in Microbial Populations II. a Repeatable Adaptation in SACCHAROMYCES CEREVISIAE.
    Francis JC; Hansche PE
    Genetics; 1973 Jun; 74(2):259-65. PubMed ID: 17248616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of yeast acid phosphatase by orthophosphate and phenylmercuric acetate.
    Mildner P; Ries B; Golubić Z; Poto E
    J Gen Microbiol; 1972 Sep; 72(2):403-5. PubMed ID: 4562311
    [No Abstract]   [Full Text] [Related]  

  • 4. Gene duplication as a mechanism of genetic adaptation in Saccharomyces cerevisiae.
    Hansche PE
    Genetics; 1975 Apr; 79(4):661-74. PubMed ID: 236976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.
    Nosaka K
    Biochim Biophys Acta; 1990 Feb; 1037(2):147-54. PubMed ID: 2407294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae.
    Tamai Y; Toh-e A; Oshima Y
    J Bacteriol; 1985 Nov; 164(2):964-8. PubMed ID: 3902805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of the active and inactive forms of Saccharomyces cerevisiae acid phosphatase.
    Schweingruber AM; Schweingruber ME
    Mol Gen Genet; 1982; 187(1):107-11. PubMed ID: 6761540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae.
    Martinez P; Persson BL
    Mol Gen Genet; 1998 Jun; 258(6):628-38. PubMed ID: 9671031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cytochemical study of the localization of acid phosphatase in Saccharomyces cerevisiae at different growth phases.
    Rainina EI; Zubatov AS; Buchwalow IB; Luzikov VN
    Histochem J; 1979 May; 11(3):299-310. PubMed ID: 37195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of acid phosphatase of baker's yeast. Factors influencing its production by protoplasts and characterization of the secreted enzyme.
    Van Rijn HJ; Boer P; Steyn-Parvé EP
    Biochim Biophys Acta; 1972 May; 268(2):431-41. PubMed ID: 4554644
    [No Abstract]   [Full Text] [Related]  

  • 12. A particulate form of alkaline phosphatase in the yeast, Saccharomyces cerevisiae.
    Mitchell JK; Fonzi WA; Wilkerson J; Opheim DJ
    Biochim Biophys Acta; 1981 Feb; 657(2):482-94. PubMed ID: 7011403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of exocellular acid phosphatase activity on Saccharomyces mellis after treatment of the organism with reagents that affect the cell surface.
    Weimberg R
    J Bacteriol; 1971 Dec; 108(3):1097-106. PubMed ID: 5139532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Some kinetic aspects of the mechanism of action of an acid phosphatase from baker's yeast (Saccharomyces cerevisiae).
    Boer P; Steyn-Parvé EP
    Biochim Biophys Acta; 1969 Feb; 171(2):360-2. PubMed ID: 5773442
    [No Abstract]   [Full Text] [Related]  

  • 15. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae.
    To-E A; Ueda Y; Kakimoto SI; Oshima Y
    J Bacteriol; 1973 Feb; 113(2):727-38. PubMed ID: 4570606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression of the acid phosphatase of Saccharomyces bisporus in relation to the polyphosphate content of the cells.
    Weimberg R
    Can J Microbiol; 1976 Jun; 22(6):867-72. PubMed ID: 1277007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model of cell growth and phosphatase biosynthesis in Saccharomyces carlsbergensis under phosphate limitation.
    Toda K; Yabe I
    Biotechnol Bioeng; 1979 Mar; 21(3):487-502. PubMed ID: 427266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a dominant, constitutive mutation, PHOO, for the repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Toh-E A; Oshima Y
    J Bacteriol; 1974 Nov; 120(2):608-17. PubMed ID: 4616940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the formation of acid phosphatases by inorganic phosphate in Aspergillus ficuum.
    Shieh TR; Wodzinski RJ; Ware JH
    J Bacteriol; 1969 Dec; 100(3):1161-5. PubMed ID: 4311867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.
    Bostian KA; Lemire JM; Halvorson HO
    Mol Cell Biol; 1982 Jan; 2(1):1-10. PubMed ID: 7050664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.