These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 4552227)

  • 21. Regulation of phosphatase synthesis in Saccharomyces cerevisiae--a review.
    Oshima Y; Ogawa N; Harashima S
    Gene; 1996 Nov; 179(1):171-7. PubMed ID: 8955644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification, carbohydrate composition and kinetic properties of the constitutive yeast acid phosphatase.
    Mrsa V; Barbarić S; Ries B; Mildner P
    Biochem Int; 1985 Apr; 10(4):567-75. PubMed ID: 3896242
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phosphate uptake in chemostat cultures of Escherichia coli K-12 subjected to periodic beta-glycerophosphate pulsing: a system for assaying alkaline phosphatase.
    Francis JC; King SL
    Can J Microbiol; 1979 May; 25(5):560-4. PubMed ID: 38894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphatase activity among Candida species and other yeasts isolated from clinical material.
    Smith RF; Blasi D; Dayton SL
    Appl Microbiol; 1973 Sep; 26(3):364-7. PubMed ID: 4584579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identity of soluble thiamine-binding protein with thiamine repressible acid phosphatase in Saccharomyces cerevisiae.
    Nosaka K; Nishimura H; Iwashima A
    Yeast; 1989 Apr; 5 Spec No():S447-51. PubMed ID: 2665373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The structure of the yeast cell wall. Solubilization of a marker enzyme, -fructofuranosidase, by the autolytic enzyme system.
    Arnold WN
    J Biol Chem; 1972 Feb; 247(4):1161-9. PubMed ID: 4551513
    [No Abstract]   [Full Text] [Related]  

  • 27. Biochemical properties and excretion behavior of repressible acid phosphatases with altered subunit composition.
    Shnyreva MG; Petrova EV; Egorov SN; Hinnen A
    Microbiol Res; 1996 Aug; 151(3):291-300. PubMed ID: 8817921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cell surface associated phosphatase activity of Mycobacterium bovis BCG is not regulated by environmental inorganic phosphate.
    Braibant M; Content J
    FEMS Microbiol Lett; 2001 Feb; 195(2):121-6. PubMed ID: 11179639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Physiological properties of Saccharomyces cerevisiae during sine-modulated and stepwise changes in the medium pH].
    Ivanitskaia IuG; Petrikevich SB; Komkov AV
    Mikrobiologiia; 1990; 59(1):52-8. PubMed ID: 2197528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymological properties of the LPP1-encoded lipid phosphatase from Saccharomyces cerevisiae.
    Furneisen JM; Carman GM
    Biochim Biophys Acta; 2000 Feb; 1484(1):71-82. PubMed ID: 10685032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid.
    de Lucena RM; Elsztein C; Simões DA; de Morais MA
    J Appl Microbiol; 2012 Sep; 113(3):629-40. PubMed ID: 22702539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The activity of plasma membrane H(+)-ATPase is strongly stimulated during Saccharomyces cerevisiae adaptation to growth under high copper stress, accompanying intracellular acidification.
    Fernandes AR; Sá-Correia I
    Yeast; 2001 Apr; 18(6):511-21. PubMed ID: 11284007
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Formation of secreted acid phosphatase during the growth of Saccharomyces cerevisiae yeasts on different sources of carbon and nitrogen nutrition].
    Semenova IN; Egorov SN; Egorov NS
    Mikrobiologiia; 1986; 55(5):796-9. PubMed ID: 3547042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation and major chromosomal changes in populations of Saccharomyces cerevisiae.
    Adams J; Puskas-Rozsa S; Simlar J; Wilke CM
    Curr Genet; 1992 Jul; 22(1):13-9. PubMed ID: 1611666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH on adenine and amino acid uptake during sporulation in Saccharomyces cerevisiae.
    Mills D
    J Bacteriol; 1972 Oct; 112(1):519-26. PubMed ID: 4562406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slow Adaptive Response of Budding Yeast Cells to Stable Conditions of Continuous Culture Can Occur without Genome Modifications.
    Klim J; Zielenkiewicz U; Kurlandzka A; Kaczanowski S; Skoneczny M
    Genes (Basel); 2020 Nov; 11(12):. PubMed ID: 33261040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The active transport of phosphate into the yeast cell.
    GOODMAN J; ROTHSTEIN A
    J Gen Physiol; 1957 Jul; 40(6):915-23. PubMed ID: 13439168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of step enzymes as markers during meiosis and ascospore formation in Saccharomyces cerevisiae.
    Matur A; Berry DR
    J Gen Microbiol; 1978 Dec; 109(2):205-13. PubMed ID: 370342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mutagenesis of the phosphatase sequence motif in diacylglycerol pyrophosphate phosphatase from Saccharomyces cerevisiae.
    Toke DA; McClintick ML; Carman GM
    Biochemistry; 1999 Nov; 38(44):14606-13. PubMed ID: 10545184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.