These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 4553143)
1. Interrelationship of heat and relative humidity in the destruction of Clostridium botulinum type E spores on whitefish chubs. Pace PJ; Krumbiegel ER; Wisniewski HJ Appl Microbiol; 1972 Apr; 23(4):750-7. PubMed ID: 4553143 [TBL] [Abstract][Full Text] [Related]
2. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of an enrichment culture procedure for detection of Clostridium botulinum type E in raw and smoked whitefish chubs. Pace PJ; Wisniewski HJ; Angelotti R Appl Microbiol; 1968 May; 16(5):673-9. PubMed ID: 4872995 [TBL] [Abstract][Full Text] [Related]
4. Survival and outgrowth of Clostridium botulinum type E spores in smoked fish. Christiansen LN; Deffner J; Foster EM; Sugiyama H Appl Microbiol; 1968 Jan; 16(1):133-7. PubMed ID: 4865899 [TBL] [Abstract][Full Text] [Related]
5. Demonstration and isolation of Clostridium botulinum types from whitefish chubs collected at fish smoking plants of the Milwaukee area. Pace PJ; Krumbiegel ER; Angelotti R; Wisniewski HJ Appl Microbiol; 1967 Jul; 15(4):877-84. PubMed ID: 4860531 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF; Mason DR; Peck MW Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [TBL] [Abstract][Full Text] [Related]
7. Survival studies with spores of Clostridium botulinum type E in pasteurized meat of the blue crab Callinectes sapidus. Cockey RR; Tatro MC Appl Microbiol; 1974 Apr; 27(4):629-33. PubMed ID: 4596746 [TBL] [Abstract][Full Text] [Related]
8. Clostridium botulinum and its importance in fishery products. Hobbs G Adv Food Res; 1976; 22():135-85. PubMed ID: 790905 [No Abstract] [Full Text] [Related]
9. Control of nonproteolytic Clostridium botulinum types B and E in crab analogs by combinations of heat pasteurization and water phase salt. Peterson ME; Paranjpye RN; Poysky FT; Pelroy GA; Eklund MW J Food Prot; 2002 Jan; 65(1):130-9. PubMed ID: 11808784 [TBL] [Abstract][Full Text] [Related]
10. Effect of lysozyne on the recovery of heated Clostridium botulinum spores. Alderton G; Chen JK; Ito KA Appl Microbiol; 1974 Mar; 27(3):613-5. PubMed ID: 4596393 [TBL] [Abstract][Full Text] [Related]
11. Combining heat treatment and subsequent incubation temperature to prevent growth from spores of non-proteolytic Clostridium botulinum. Stringer SC; Fairbairn DA; Peck MW J Appl Microbiol; 1997 Jan; 82(1):128-36. PubMed ID: 9113882 [TBL] [Abstract][Full Text] [Related]
12. Thermal destruction of Clostridium botulinum spores suspended in tomato juice in aluminum thermal death time tubes. Odlaug TE; Pflug IJ Appl Environ Microbiol; 1977 Jul; 34(1):23-9. PubMed ID: 329760 [TBL] [Abstract][Full Text] [Related]
13. Heat resistance of spores of marine and terrestrial strains of Clostridium botulinum type C. Segner WP; Schmidt CF Appl Microbiol; 1971 Dec; 22(6):1030-3. PubMed ID: 4944802 [TBL] [Abstract][Full Text] [Related]
14. Hazard and control of group II (non-proteolytic) Clostridium botulinum in modern food processing. Lindström M; Kiviniemi K; Korkeala H Int J Food Microbiol; 2006 Apr; 108(1):92-104. PubMed ID: 16480785 [TBL] [Abstract][Full Text] [Related]
15. Survival and dormancy of Clostridia spores. Hofer JW; Davis J Tex Med; 1972 Feb; 68(2):80-1. PubMed ID: 4552272 [No Abstract] [Full Text] [Related]
16. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Fernández PS; Peck MW Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033 [TBL] [Abstract][Full Text] [Related]
17. Development and application of a new method for specific and sensitive enumeration of spores of nonproteolytic Clostridium botulinum types B, E, and F in foods and food materials. Peck MW; Plowman J; Aldus CF; Wyatt GM; Izurieta WP; Stringer SC; Barker GC Appl Environ Microbiol; 2010 Oct; 76(19):6607-14. PubMed ID: 20709854 [TBL] [Abstract][Full Text] [Related]
18. Production of types A and B spores of Clostridium botulinum by the biphasic method: effect on spore population, radiation resistance, and toxigenicity. Anellis A; Berkowitz D; Kemper D; Rowley DB Appl Microbiol; 1972 Apr; 23(4):734-9. PubMed ID: 4111814 [TBL] [Abstract][Full Text] [Related]
19. Linden flower (Tilia spp.) as potential vehicle of Clostridium botulinum spores in the transmission of infant botulism. Bianco MI; Lúquez C; De Jong LI; Fernández RA Rev Argent Microbiol; 2009; 41(4):232-6. PubMed ID: 20085187 [TBL] [Abstract][Full Text] [Related]
20. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) provides new possibilities for optimizing processes to manage risk of C. sporogenes spoilage. Boix E; Couvert O; André S; Coroller L Food Microbiol; 2021 Dec; 100():103832. PubMed ID: 34416948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]